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SPAariME:
O ur imagination is stretched to the utmost, not, as 

in fiction, to imagine things which are not really there, 
hut just to comprehend those things which are there.

Richard P. Feynman

1.1 PARABLE OF THE SURVEYORS
disagree on northward and eastward 
separations; agree on distance

Once upon a time there was a Daytime surveyor who measured off the king’s lands. 
He took his directions of north and east from a magnetic compass needle. Eastward 
separations from the center of the town square he measured in meters. The northward 
direction was sacred. He measured northward separations from the town square in a 
different unit, in miles. His records were complete and accurate and were often 
consulted by other Daytimers.

A second group, the Nighttimers, used the services of another surveyor. Her north 
and east directions were based on a different standard of north: the direction of the 
North Star. She too measured separations eastward from the center of the town square 
in meters and sacred separations northward in miles. The records of the Nighttime 
surveyor were complete and accurate. Marked by a steel stake, every corner of a plot 
appeared in her book, along with its eastward and northward separations from the 
town square.

Daytimers and Nighttimers did not mix but lived mostly in peace with one another. 
However, the two groups often disputed the location of property boundaries. Why? 
Because a given corner of the typical plot of land showed up with different numbers in 
the two record books for its eastward separation from the town center, measured in 
meters (Figure 1 -1). Northward measurements in miles also did not agree between the 
two record books. The differences were small, but the most careful surveying did not 
succeed in eliminating them. No one knew what to do about this single source of 
friction between Daytimers and Nighttimers.

One fall a student of surveying turned up with novel open-mindedness. Unlike all 
previous students at the rival schools, he attended both. At Day School he learned

Daytime surveyor uses 
magnetic north

Nighttime surveyor uses 
North-Star north
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magnetic
north

North-Star
north

magnetic
east

North-Star
east

NIGHTTIME: NORTH-STAR NORTH
FIGURE 1 -1. The town as plotted by Daytime and Nighttime surveyors. Notice that the line of 
Daytime magnetic north just grazes the left side of the north gate, while the line of Nighttime North-Star 
north just grazes the right side of the same gate. Steel stakes A, B, C, D driven into the ground mark the 
comers of a disputed plot of land. Ar shown, the eastward separation of stake A from the north-south line 
measured by the Daytime surveyor is different from that measured by the Nighttime surveyor.

Student converts miles to meters

from one expert his method of recording locations of gates of the town and corners of 
plots of land based on magnetic north. At Night School he learned the other method, 
based on North-Star north.

As days and nights passed, the student puzzled more and more in an attempt to find 
some harmonious relationship between rival ways of recording location. His attention 
was attracted to a particular plot of land, the subject of dispute between Daytimers and 
Nighttimers, and to the steel stakes driven into the ground to mark corners of this 
disputed plot. He carefully compared records of the two surveyors (Figure 1-1, Table
1- 1).

In defiance of tradition, the student took the daring and heretical step of converting 
northward measurements, previously expressed always in miles, into meters by multi­
plying with a constant conversion factor k. He found the value of this conversion factor 
to be ^ =  1609.344 meters/mile. So, for example, a northward separation of 3 miles 
could be converted to ^ X  3 miles =  1609.344 meters/mile X 3 miles =  4828.032 
meters. "At last we are treating both directions the same!” he exclaimed.

Next the student compared Daytime and Nighttime measurements by trying 
various combinations of eastward and northward separation between a given stake 
and the center of the town square. Somewhere rhe student heard of the Pythagorean 
Theorem, that the sum of squares of the lengths of two perpendicular legs of a right 
triangle equals the square of the length of the hypotenuse. Applying this theorem, he 
discovered that the expression

Daytim e Daytim e
/  northward \ 2 eastward

k X 1 separation I + separation
\  (miles) /  _ (meters)

( 1- 1)



1.1 PARABLE OF THE SURVEYORS

------------------------------ iĈ ^ ^ B L E  1 - 1 ^ -------------------------------

TWO DIFFERENT SETS OF RECORDS; SAME PLOT OF LAND
Daytime surveyor’s axes Nighttime surveyor's axes

oriented to magnetic north oriented to North-Star north
Eastward Northward Eastward Northward
(meters) (miles) (meters) (miles)

Town square 
Corner stakes:

0 0 0 0

Stake A 4010.1 1.8330 3950.0 1.8827
Stake B 5010.0 1.8268 4950.0 1,8890
Stake C 4000.0 1.2117 3960.0 1.2614
Stake D 5000.0 1.2054 4960.0 1.2676

based on Dayrime measurements of the position of steel stake C had exaaly the 
same numerical value as the quantity

N ighttim e N ighttim e
/  northward \ 2 eastward

k X  1 separation 1 + separation
V (miles) /  _ (meters)

( 1- 2)

computed from the readings of the Nighttime surveyor for stake C (Table 1-2). He

- C j ^ B L E

“ INVARIANT DISTANCE” FROM CENTER OF TOWN SQUARE TO STAKE C
(Data from  Table 1 - 1 )

Daytime measurements Nighttime measurements

Northward separation 
1.2117 miles

Northward separation 
1.2614 miles

Multiply by
k =  1609.344 meters/mile

Multiply by
k =  1609.344 meters/mile

to convert to meters: to convert to meters:
1950.0 meters 2030.0 meters
Square the value 3,802,500 (meters)^ Square the value 4,120,900 (meters)^
Eastward separation 
4000.0 meters

Eastward separation 
3960.0 meters

Square the value and add -b 16,000,000 (meters)^ Square the value and add +  15,681,600 (meters)^
Sum of squares =  19,802,500 (meters)^ Sum of squares =  19,802,500 (meters)^
Expressed as a 
number squared =  (4450 meters)^

Expressed as a 
number squared =  (4450 meters)^

This is the square 
of what measurement? 4450 meters

This is the square 
of what measurement? 4450 meters

i i
SAME

DISTANCE
from center of Town Square
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magnetic north

town square

DAYTIME: MAGNETIC NORTH

North-Star north

N IGH H IM E; NORTH-STAR NORTH

FIGURE 1 -2. The distance between stake A 
and the center of the town square has the same 
value for Daytime and Nighttime surveyors, 
even though the northward and eastward sepa­
rations, respectively, are not the same for the two 
surveyors.

Discovery: Invariance of distance

cried the same comparison on recorded positions of stakes A, B, and D and found 
agreement here too. The student’s excitement grew as he checked his scheme of 
comparison for all stakes at the corners of disputed plots —  and found everywhere 
agreement.

Flushed with success, the student methodically converted all northward measure­
ments to units of meters. Then the student realized that the quantity he had calculated, 
the numerical value of the above expressions, was not only the same for Daytime and 
Nighttime measurements. It was also the square of a length: (meters)^. He decided to 
give this length a name. He called it the d istance from the center of town.

( 1-3)

He said he had discovered the p rincip le  o f invariance o f distance; he reckoned 
exactly the same value for distance from Daytime measurements as from Nighttime 
measurements, despite the fact that the two sets of surveyors’ numbers differed 
significantly (Figure 1-2).

After some initial confusion and resistance, Day timers and Nighttimers welcomed 
rhe srudent’s new idea. The invariance of distance, along with further results, made it 
possible to harmonize Daytime and Nighttime surveys, so everyone could agree on the 
location of each plot of land. In this way the last source of friction between Day timers 
and Nightrimers was removed.

northward 2 eastward
(distance)^ — separarion

(meters)
+ separarion

(meters)
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1.2 SURVEYING SPACETIME
disagree on separations in space and time; 
agree on spacetime interval

The Parable of the Surveyors illustrates the naive state of physics before the discovery 
of special relativity  by Einstein of Bern, Lorentz of Leiden, and Poincare of Paris. 
Naive in what way? Three central points compare physics at the turn of the twentieth 
century with surveying before the student arrived to help Daytimers and Nighttimers.

First, surveyors in the mythical kingdom measured northward separations in a 
sacred unit, the mile, different from the unit used in measuring eastward separations. 
Similarly, people smdying physics measured time in a sacred unit, called the second, 
different from the unit used to measure space. No one suspected the powerful results 
of using the same unit for both, or of squaring and combining space and time 
separations when both were measured in meters. Time in meters is just the time it takes 
a light flash to go that number of meters. The conversion factor between seconds and 
meters is the speed of light, c =  299,792,458 meters/second. The velocity of light c 
(in meters/second) multiplied by time t (in seconds) yields ct (in meters).

The speed of light is the only natural constant that has the necessary units to convert 
a time to a length. Historically the value of the speed of light was regarded as a sacred 
number. It was not recognized as a mere conversion factor, like the factor of conversion 
between miles and meters —  a factor that arose out of historical accident in human­
kind’s choice of units for space and time, with no deeper physical significance.

Second, in the parable northward readings as recorded by two surveyors did not 
differ much because the two directions of north were inclined to one another by only 
the small angle of 1.15 degrees. At first our mythical student thought that small 
differences between Daytime and Nighttime northward measurements were due to 
surveying error alone. Analogously, we used to think of the separation in time between 
two electric sparks as the same, regardless of the motion of the observer. Only with the 
publication of Einstein’s relativity paper in 1905 did we learn that the separation in 
time between two sparks really has different values for observers in different states of 
motion —  in different frames.

Think of John standing quietly in the front doorway of his laboratory building. 
Suddenly a rocket carrying Mary flashes through rhe front door past John, zooms 
down the middle of the long corridot, and shoots out the back door. An antenna 
projects from the side of Mary’s rocket. As the rocket passes John, a spark jumps across 
rhe 1-millimeter gap between the antenna and a pen in John’s shirt pocket. The rocket 
continues down the corridor. A second spark jumps 1 millimeter between the antenna 
and the fire extinguisher mounted on the wall 2 meters farther down the corridor. Still 
latet other metal objects nearer the rear receive additional sparks from the passing 
rocket before it finally exits through the rear door.

John and Mary each measure the lapse of time between “pen spark” and “fire- 
extinguisher spark.” They use accurate and fast electronic clocks. John measures 
this time lapse as 33.6900 thousand-millionths of a second (0.0000000336900 
second =  33.6900 X 10“  ̂ second). This equals 33.6900 nanoseconds in the 
terminology of high-speed electronic circuitry. (One nanosecond =  10~^ second.) 
Mary measures a slightly different value for the time lapse between the two sparks, 
33.0228 nanoseconds. For John the fire-extinguisher spark is separated in space by 
2.0000 meters from the pen spark. For Mary in the rocket the pen spark and 
fire-extinguisher spark occur at the same place, namely at the end of her antenna. Thus 
fot her their space separation equals zero.

Later, laboratory and rocket observers compare their space and time measurements 
between the various sparks (Table 1-3). Space locations and time lapses in both frames 
are measured from the pen spark.

The second: A sacred unit

Speed of light converts seconds 
to meters

Time between events: Different 
for different frames

O ne observer uses laboratory 
frame

Another observer uses rocket 
frame
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-------------------- C [ ^ B L E l - 3 ^ > --------------------

SPACE AND TIME LOCATIONS OF THE SAME 
SPARKS AS SEEN BY TWO OBSERVERS

Distance and time between sparks as measured by observer who is
standing in laboratory (John) moving by in rocket (Mary)

Distance
(meters)

Time
(nanoseconds)

Distance
(meters)

Time
(nanoseconds)

Reference spark 
(pen spark)

0 0 0 0

Spark A
(fire-extinguisher
spark)

2.0000 33.6900 0 33.0228

Spark B 3.0000 50.5350 0 49.5343
Spark C 5.0000 84.2250 0 82.5572
Spark D 8.0000 134.7600 0 132.0915

Discovery: Invariance of 
spacetime interval

The third point of comparison between the Parable of the Surveyors and the state of 
physics before special relativity is this: The mythical student’s discovery of the concept 
of distance is matched by the Einstein -  Poincare discovery in 1905 of the invariant 
spacetim e in terval (formal name Lorentz in terval, but we often say just in te r­
val), a central theme of this book. Let each time measurement in seconds be converted 
to meters by multiplying it by the “conversion factor c "  the speed of light:

c =  299,792,458 meters/second =  2.99792458 X 10* meters/second 
=  0.299792458 X 10^ meters/second =  0.299792458 meters/nanosecond

Then the square of the spacetime interval is calculated from the laboratory observer’s 
measurements by subtracting the square of the space separation from the square of the 
time separation. Note the minus sign in equation (1-4).

Laboratory Laboratory
/  time \ 2 space

(interval)^ = c X 1 separation 1 — separation
V (seconds) /  _ (meters)

( 1-41

The rocket calculation gives exactly the same value of the interval as the laboratory 
calculation.

R ocket R ocket
/  time \ 2 space

(interval)^ = c X 1 separation 1 
V (seconds) /  _

separation
(meters)

(1-5)

even though the respective space and time separations are not the same. Two observers 
find different space and time separations, respectively, between pen spark and fire- 
extinguisher spark, but when they calculate the spacetime interval between these 
sparks their results agree (Table 1-4).

The student surveyor found that invariance of distance was most simply written 
with both northward and eastward separations expressed in the same unit, the meter. 
Likewise, invariance of the spacetime interval is most simply written with space and
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- C ^ A B L E

“ INVARIANT SPACETIME INTERVAL” FROM REFERENCE SPARK TO SPARK A
(Data from Table 1-3]

Laboratory measurements Rocket measurements

Time lapse
33.6900 X 10-« seconds 
=  33.6900 nanoseconds 
Multiply by 
r =  0.299792458 
meters per nanosecond 
to convert to meters: 
10.1000 meters 
Square the value 102.010 (meters)^

Time lapse
33.0228 X 10-9 seconds 
=  33.0228 nanoseconds 
Multiply by 
f =  0.299792458 
meters per nanosecond 
to convert to meters: 
9.9000 meters 
Square the value 98.010 (meters)^

Spatial separation 
2.000 meters
Square the value and subtract — 4.000 (meters)^

Spatial separation 
zero
Square the value and subtraa -  0

Result of subtaction =  98.010 (meters)^ Result of subtaction =  98.010 (meters)^
expressed as a 
number squared =  (9.900 meters)^

expressed as a 
number squared =  (9.900 meters)^

This is the square 
of what measurement? 9.900 meters

This is the square 
of what measurement? 9.900 meters

i i
SAME SPACETIME
INTERVAL

from the reference event

time separations expressed in the same unit. Time is converted to meters: t (meters) = 
£• X t (seconds). Then the interval appears in simplified form:

time 2 space
(interval)^ — separation — separation

(meters) (meters)
( 1- 6 )

The invariance o f the spacetim e in terval —  its independence of the state of 
motion of the observer —  forces us to recognize that time cannot be separated from 
space. Space and time are part of a single entity, spacetim e. Space has three 
dimensions: northward, eastward, and upward. Time has one dimension: onward! 
The interval combines all four dimensions in a single expression. The geometry of 
spacetime is truly four-dimensional.

To recognize the unity of spacetime we follow the procedure that makes a landscape 
take on depth— we look at it from several angles. That is why we compare space and 
rime separations between events A  and B as recorded by two different observers in 
relative motion.

Space and time are 
part of spacetime

Why the minus sign in the equation for the interval? Pythagoras tells us to AD D  the 
squares of northward and eastward separations to get the square of the distance. Who 
tells us to SUBTRACT the square of the space separation between events from the square 
of their time separation in order to get the square of the spacetime interval?
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Shocked? Then you’re well on the way to understanding the new world of very fast 
motion! This world goes beyond the three-dimensional textbook geometry of Euclid, 
in which distance is reckoned from a sum of squares. In this book we use another 
kind of geometry, called Lorentz geometry, more real, more powerful than Euclid 
for the world of the very fast. In Lorentz geometry the squared space separation is 
combined with the squared time separation in a new way— by subtraction. The 
result is the square of a new unity called the spacetime intervalhtvf/ttn events. The 
numerical value of this interval is invariant, the same for all observers, no matter 
how fast they are moving past one another. Proof? Every minute of every day an 
experiment somewhere in the world demonstrates it. In Chapter 3 we derive the 
invariance of the spacetime interval— with its minus sign— from experiments. 
They show the finding that no experiment conducted in a closed room will reveal 
whether that room is “at rest’’ or “in motion” (Einstein’s Principle of Relativity). 
We won’t wait until then to cash in on the idea of interval. We can begin to enjoy the 
payoff right now.

S A M P L E  P R O B L E M  l - i ;
SP ARKIN G  AT A FASTER RATE

Another, even faster rocket follows the first, enter­
ing the ftont door, zipping down the long corridor, 
and exiting through the back doorway. Each time 
the rocket clock ticks it emits a spark. As before, 
the first spark jumps the 1 millimeter from the 
passing rocket antenna to the pen in the pocket of

John, the laboratory observer. The second flash 
jumps when the rocket antenna reaches a door­
knob 4.00000000 meters farther along the hall as 
measured by the laboratory observer, who records 
the time between these two sparks as 16.6782048 
nanoseconds.

a. What is the time between sparks, measured in meters by John, the laboratory 
observer?

b. What is the value of the spacetime interval between the two events, calculated 
from John’s laboratory measurements?

c. Predict: What is the value of the interval calculated from measurements in the 
new racket frame?

d. What is the distance between sparks as measured in this rocket frame?

e. What is the time (in meters) between sparks as measured in this rocket frame? 
Com pare w ith the tim e between the same sparks as measured by John  in the 
laboratory frame.

f. What is the speed of this rocket as measured by John in the laboratory?

SOLUTION
a. Time in meters equals time in nanoseconds multiplied by the conversion factor, 

the speed of light in meters per nanosecond. For John, the laboratory observer,

16.6782048 nanoseconds X 0.299792458 meters/nanosecond
== 5.00000000 meters

b. The square of the interval between two flashes is reckoned by subtracting the 
square of the space separation from the square of the time separation. Using 
laboratory figures:

(interval)^ =  (laboratory time)^ — (laboratory distance)^ 
=  (5 meters)^ — (4 meters)^ =  25 (meters)^ - 
=  9 (meters)^ ~  (3 meters)^

16 (meters)^
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Therefore the interval between the two sparks has the value 3 meters (to nine 
significant figures).

c. We strongly assert in this chapter that the spacetim e in terval is invarian t — 
has the same value by whomever calculated. Accordingly, the interval between 
the two sparks calculated from rocket observations has the same value as the 
interval (3 meters) calculated from laboratory measurements.

d. From the rocket rider’s viewpoint, both sparks jump from the same place, namely 
the end of her antenna, and so distance between the sparks equals zero for the 
rocket rider.

e. We know the value of the spacetime interval between two sparks as computed in 
the rocket frame (c). And we know that the interval is computed by subtracting 
the square of the space separation from the square of the time separation in the 
rocket frame. Finally we know that the space separation in the rocket frame 
equals zero (d). Therefore the rocket time lapse between the two sparks equals the 
interval between them;

(interval)^ =  (rocket time)^ — (rocket distance)^
(3 meters)^ =  (rocket time)^ — (zero)^

from which 3 meters equals the rocket time between sparks. Compare this with 5 
meters of light-travel time between sparks as measured in the laboratory frame.

f. Measured in the laboratory frame, the rocket moves 4 meters of distance (state­
ment of the problem) in 5 merers of light-travel time (a). Therefore its speed in 
the laboratory is 4 /5  light speed. Why? Well, light moves 4 meters of distance in 
4 meters of time. The rocket takes longer to cover this distance: 5 meters of time. 
Suppose that instead of 5 meters of time, the rocket had taken 8 meters of time, 
twice as long as light, to cover rhe 4 meters of disrance. In that case it would be 
moving at 4 /8  —  or half— the speed of light. In the present case the rocket 
travels the 4 meters of distance in 5 meters of time, so it moves at 4 /5  light speed. 
Therefore its speed equals

(4/5) X 2.99792458 X 10® meters/second
2.3983397 X 10® meters/second

1.3 EVENTS AND INTERVALS ALONE!
tools enough to chart matter and motion 
without any reference frame

In surveying, rhe fundamental concept is place. The surveyor drives a steel stake to 
mark the corner of a plot of land —  to mark a place. A second stake marks another 
corner of the same plot —  another place. Every surveyor —  no matter what his or her 
standard of north —  can agree on the value of the distance between the two stakes, 
between the two places.

Every stake has its own reality. Likewise the distance between every pair of srakes 
also has its own teality, which we can experience direcrly by pacing off the straight line 
from one stake to the other stake. The reading on our pedometer— the distance

Surveying locates a place
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Physics locates an event

Wristwatch measures 
interval directly

between stakes— is independent of all surveyors’ systems, with their arbitrary choice 
of north.

More: Suppose we have a table of distances between every pair of stakes. That is all 
we need! From this table and the laws of Euclidean geometry, we can constmct the 
map of every surveyor (see the exercises for this chapter). Distances between stakes: 
That is all we need to locate every stake, every place on the map.

In physics, the fundamental concept is event. The collision between one particle 
and another is an event, with its own location in spacetime. Another event is the 
emission of a flash of light from an atom. A third is the impact of the pebble that chips 
the windshield of a speeding car. A fourth event, likewise fixing in and by itself a 
location in spacetime, is the strike of a lightning bolt on the rudder of an airplane. An 
event matks a location in spacetime; it is like a steel stake driven into spacetime.

Every laboratory and rocket observer— no matter what his or her relative velocity 
— can agree on the spacetime interval between any pair of events.

Every event has its own reality. Likewise the interval between every pair of events 
also has its own reality, which we can experience directly. We carry our wristwatch at 
constant velocity from one event to the other one. It is not enough just to pass through 
the two physical locations— we must pass through the actual events', we must be at 
each event precisely when it occurs. Then the space separation between the two events 
is zero for us —  they both occur at our location. As a result, our wristwatch reads 
directly the spacetime interval between the pait of events:

(interval)^ —
time

separation
(meters)

time
separation
(meters)

space
separation
(meters)

— [zero]^
time

separation
(meters)

[wristwatch time}

‘Do science” with intervals alone

The time read on a wristwatch carried between two events —  the interval between 
those events —  is independent of all laboratory and rocket reference frames.

More: To chart all happenings, we need no more than a table of spacetime intervals 
between every pair of events. That is all we need! From this table and the laws of 
Lorentz geometry, it turns out, we can construct the space and time locations of events 
as observed by every laboratory and rocket observet. Intervals between events: That is 
all we need to specify the location of every event in spacetime.

In brief, we can completely describe and locate events entirely without a reference 
frame. We can analyze the physical world— we can “do science” —  simply by 
cataloging every event and listing the interval between it and every other event. The 
unity of spacetime is reflected in the simplicity of entries in our table: intervals only.

O f course, if we want to use a reference frame, we can do so. We then list in our table 
the individual northward, eastward, upward, and time separations between pairs of 
events. However, these laboratory-frame listings for a given pair of events will be 
different from the corresponding listings that our rocket-frame colleague puts in her 
table. Nevertheless, we can come to agreement if we use the individual separations to 
reckon the interval between each pair of events:

(interval)^ — (time separation)^ — (space separation)^

That returns us to a universal, frame-independent description of the physical world.

When two events both occur at the position of a certain clock, that special clock 
measures directly the interval between these two events. The interval is called the 
p ro p e r  tim e (or sometimes the local tim e). The special clock that records the 
proper time directly has the name p ro p e r  clock  for this pair of events. In this book
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we often call the proper time the w ristw atch  tim e and the proper clock the 
w ristw atch  to emphasize that the proper clock is carried so that it is “present” at 
each of the two events as the events occur.

In Einstein’s German, the word for proper time is Eigenzeil, or “own-time,” 
implying “one’s very own time.” The German word provides a more accurate 
description than the English. In English, the word “proper” has come to mean 
“ following conventional mles.” Proper time certainly does not do that!

Hey! I just thought of something: Suppose two events occur at the same time in my frame 
but very fa r  apart, for example two handclaps, one in New York City and one in San 
Francisco. Since they are simultaneous in my frame, the time separation between 
handclaps is zero. But the space separation is not zero— they are separated by the width 
of a continent. Therefore the square of the interval is a negative number:

{interval^ =  (time separation^ — (space separation)^
=  (zero)^ — (space separation)^ =  — (space separation)^

How can the square of the spacetime interval be negative?

In most of the situations described in the present chapter, there exists a reference 
frame in which two events occur at the same place. In these cases time separation 
predominates in all frames, and the interval squared will always be positive. We call 
these intervals tim elike  in tervals.

Euclidean geometry adds squares in reckoning distance. Hence the result of the 
calculation, distance squared, is always positive, regardless of the relative magni­
tudes of north and east separations. Lorentz geometry, however, is richer. For your 
simultaneous handclaps in New York City and San Francisco, space separation 
between handclaps predominates. In such cases, the interval is called a spacelike 
in te rval and its form is altered to

(interval)^ =  (space separation)^ — (time separation)^ [when spacelike]

This way, the squared interval is never negative.
The timelike interval is measured directly using a wristwatch carried from one 

event to the other in a special frame in which they occur at the same place. In contrast, 
a spacelike interval is measured directly using a rod laid between the events in a 
special frame in which they occur at the same time. This is the frame you describe in 
your example.

Spacelike interval or timelike interval: In either case rhe interval is invariant— has 
the same value when reckoned using rocket measurements as when reckoned using 
laboratory measurements. You may want to skim through Chapter 6 where timelike 
and spacelike intervals are described more fully.

1.4 SAME UNIT FOR SPACE AND TIME: 
METER, SECOND, MINUTE, OR YEAR

meter for particle accelerators; minute for 
planets; year for the cosmos

The parable of the surveyors cautions us to use the same unit to measure both space 
and time. So we use meter for both. Time can be measured in meters. Let a flash of 
light bounce back and forth between parallel mirrors separated by 0.5 meter of

M easure time in meters
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0.5 meter

FIGURE 1 -3. This two-mirror “clock" sends to 
the eye flash after flash, each separated from the 
next by 1 meter of light-travel time. A light 
flash (represented by an asterisk) bounces back 
and forth between parallel mirrors separated 
from one another by 0.5 meter of distance. The 
silver coating of the right-hand mirror does not 
reflect perfectly: It lets 1 percent of the light pass 
through to the eye each time the light pulse hits 
it. Hence the eye receives a pulse of light every 
meter of light-travel time.

Meter officially defined 
using light speed

M easure distance in light-years

distance (Figure 1-3). Such a device is a “clock” that “ticks” each time the light flash 
arrives back at a given mirror. Between ticks the light flash has traveled a round-trip 
distance of 1 meter. Therefore we call the stretch of time between ticks 1 m eter o f 
light-travel tim e or more simply 1 m ete r o f  tim e.

One meter of light-travel time is quite small compared to typical time lapses in 
our everyday experience. Light travels nearly 300 million meters per second 
(300,000,000 meters/second =  3 X 10® meters/second, four fifths of the way to 
Moon in one second). Therefore one second equals 300 million meters of lighr-travel 
time. So 1 meter of light-travel time has the small value of one three-hundred-mil- 
lionth of a second. [How come? Because (1) light goes 300 million meters in one 
second, and (2) one three-hundred-millionth of that distance (one meter!) is covered in 
one three-hundred-millionrh of that time.] Nevertheless this unit of time is very useful 
when dealing with light and with high-speed particles. A proton early in its travel 
through a particle accelerator may be jogging along at “only” one half the speed of 
light. Then it travels 0.5 meter of distance in 1 meter of light-travel time.

We, our cars, even our jet planes, creep along at the pace of a snail compared with 
light. We call a deed quick when we’ve done it in a second. But a second for light 
means a distance covered of 300 million meters, seven trips around Earth. As we dance 
around the room to the fastest music, oh, how slow we look to light! Not zooming. 
Not dancing. Not creeping. Oozing! That long slow ooze racks up an enormous 
number of meters of light-travel time. That number is so huge that, by the end of one 
step of our frantic dance, the light that carries the image of the step’s beginning is well 
on its way to Moon.

In 1983 the General Conference on Weights and Measures officially redefined the 
meter in terms of the speed of light. T he m eter is now  defined as the  d istance 
th a t light travels in a vacuum  in the  fraction  1/299,792,458 o f a second. 
(For the definition of the second, see Box 3-2.) Since 1983 the speed of light is, by 
definition, equal to c =  299,792,458 meters/second. This makes official the central 
position of the speed of light as a conversion factor between time and space.

This official action defines distance (meter) in terms of time (second). Every day we 
use time to measure distance. “My home is only ten minutes (by car) from work.” 
“The business district is a five-minute walk.” Each statement implies a speed —  the 
speed of driving or walking— that converts distance to time. But these speeds can 
vary— for example, when we get caught in traffic or walk on cmtches. In contrast, the 
speed of light in a vacuum does not vary. It always has the same value when measured 
over time and the same value as measured by every observer.

We often describe distances to stars and galaxies using a unit of time. These 
distances we measure in light-years. One light-year equals the distance that light 
travels in one year. Along with the light-year of space goes the year of time. Here again, 
space and time are measured in the same units— years. Here again the speed of light is 
the conversion factor between measures of time and space. From our everyday per­
spective one light-year of space is quite large, almost 10,000 million million meters: 1 
light-year =  9,460,000,000,000,000 meters =  0.946 X 10*® meters. Nevertheless 
it is a convenient unit for measuring distance between stars. For example, the nearest 
star to our Sun, Proxima Centauri, lies 4.28 light-years away.

Any common unit of space or time may be used as the same unit for both space and 
time. For example. Table 1-5 gives us another convenient measure of time, seconds, 
compared with time in meters. We can also measure space in the same units, 
light-seconds. Our Sun is 499 light-seconds —  or, more simply, 499 seconds —  of 
distance from Earth. Seconds are convenient for describing distances and times among 
events that span the solar system. Alternatively we could use minutes of time and 
light-minutes of distance: Our Sun is 8.32 light-minutes from Earth. We can also use 
hours of time and light-hours of distance. In all cases, the speed of light is the 
conversion factor between units of space and time.
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-------- d ^ B L E  --------

SOME LIGHT-TRAVEL TIMES
Time in seconds 

of light-travel time Time in meters

Telephone call one way:
New York City to San Francisco 
via surface microwave link

0.0138 4.139,000

Telephone call one way:
New York City to San Ftancisco 
via Earth satellite

0.197 59,000,000

Telephone call one way:
New York City to San Francisco 
bounced off Moon

2.51 752,000,000

Flash of light: 
Emitted by Sun, 
received on Earth

499.0 149,600,000.000

Expressing time and space in the same unit m ete r is convenient for describing 
motion of high-speed particles in the confines of the laboratory. Time and space in the 
same unit second (or m inu te  or hour) is convenient for describing relations among 
events in our solar system. Time and space in the same unit year is convenient for 
describing relations among stars and among galaxies. In all three arenas spacetime is 
the stage and special relativity is the spotlight that illuminates the inner workings of 
Nature.

Use convenient units, 
the same for space and time

We are not accustomed to measuring time in meters. So as a reminder to ourselves 
we add a descriptor: meters of light-travel time. But the unit of time is still the meter. 
Similarly, the added words “seconds of distance" and ‘‘light-years’’ help to remind 
us that distance is measured in seconds or years, units we usually associate with time. 
But this unit of distance is really just second or year. The modifying descriptors are 
for our convenience only. In Nature, space and time form a unity: spacetime!

The words sound OK. The mathematics appears straightforward. The Sample Problems 
seem logical. But the ideas are so strange! Why should I believe them? How can 
invariance of the interval be proved?

No wonder these ideas seem strange. Particles zooming by at nearly the speed of 
light —  how far this is from our everyday experience! Even the soaring jet plane 
crawls along at less than one-millionth light speed. Is it so surprising that the world 
appears different at speeds a million times faster than those at which we ordinarily 
move with respect to Earth?

The notion of spacetime interval distills a wealth of real experience. We begin with 
interval because it endures: It illuminates observations that range from rhe core of a 
nucleus to the center of a black hole. Understand the spacetime interval and you 
vault, in a single bound, to the heart of spacetime.

Chapter 3 presents a logical proof of the invariance of the interval. Chapter 4 
reports a knock-down argument about it. Chapters that follow describe many 
experiments whose outcomes are rorally incomprehensible unless the interval is 
invariant. Real verification comes daily and hourly in the on-going enterprise of 
experimental physics.
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S A MP L E  P R O B L E M  1-2
PRO TON,  ROCK,  AND STARSHIP

a. A proton moving at 3 /4  light speed (with respect to the laboratory) passes 
through two detectors 2 meters apart. Events 1 and 2 are the transits through the 
two detectors. What are the laboratory space and time separations between the 
two events, in meters? What are the space and time separations between the 
events in the proton frame?

b. A speeding rock from space streaks through Earth’s outer atmosphere, creating a 
short fiery rrail (Event 1) and continues on its way to crash into Sun (Event 2) 10 
minutes later as observed in the Earth frame. Take Sun to be 1.4960 X 10“  
meters from Earth. In the Earth frame, what are space and time separations 
between Event 1 and Event 2 in minutes? What are space and time separations 
between the events in the frame of the rock?

c. In the twenty-third century a starship leaves Earth (Event 1) and travels at 95 
percent light speed, later arriving at Proxima Centauri (Event 2), which lies 4.3 
light-years from Earth. What are space and time separations between Event 1 and 
Event 2 as measured in the Earth frame, in years? What are space and time 
separations between these events in the frame of the starship?

SOLUTION
a. The space separation measured in the laboratory equals 2 meters, as given in the 

problem. A flash of light would take 2 meters of light-travel time to travel 
between the two detectors. Something moving at 1 /4  light speed would take four 
times as long: 2 meters/( 1 /4 ) =  8 meters of light-travel time to travel from one 
detector to the other. The proton, moving at 3 /4  light speed, takes 2 meters/ 
(3/4) =  8 /3  meters =  2.66667 meters of light-travel time between events as 
measured in the laboratory.

Event 1 and Event 2 both occur at the position of the proton. Therefore the 
space separation between the two events equals zero in the proton frame. This 
means that the spacetime interval —  the proper time— equals the time between 
events in the proton frame.

(proton time)^ — (proton distance)^ =  (interval)^ =  (lab time)^ — (lab distance)^ 
(proton time)^ — (zero)^ =  (2.66667 meters)^ ~  (2 meters)^

=  (7.1111— 4) (meters)^
(proton time)^ =  3.1111 (meters)^

So time between events in the proton frame equals the square root of this, or 
1.764 meters of time.

b. Light travels 60 times as far in one minute as it does in one second. Its speed in 
meters per minute is therefore:

2.99792458 X 10® meters/second X 60 seconds/minute
=  1.798754748 X 10̂ ® meters/minute

So the distance from Earth to Sun is

1.4960 X 10“  meters
1.798754748 X 10̂ ® meters/minute

— 8.3169 light-minutes



This is the distance between the two events in the Earth frame, measured in 
light-minutes. The Earth-frame time between the two events is 10 minutes, as 
stated in the problem.

In the frame traveling with the rock, the two events occur at the same place; the 
time between the two events in this frame equals the spacetime interval —  the 
proper time— between these events:

(interval)^ =  (10 minutes)^ — (8.3169 minutes)^
=  (100 -  69.1708) (minutes)^
=  30.8292 (minutes)^

The time between events in the rest frame of the rock equals the square root of 
this, or 5.5524 minutes.

c. The distance between departure from Earth and arrival at Proxima Centauri is 
4.3 light-years, as given in the problem. The starship moves at 95 percent light 
speed, or 0.95 light-years/year. Therefore it takes a time 4.3 light-years/(0.95 
light-years/year) =  4.53 years to arrive at Proxima Centauri, as measured in the 
Earth frame.

Starship time between departure from Earth and arrival at Proxima Centauri 
equals the interval:

(interval)^ =  (4.53 years)^ ~  (4.3 years)^
=  (20.52 -  18.49) (years)2 
=  2.03 (years)^

The time between events in the rest frame of the starship equals the square root of 
this, or 1.42 years. Compare with the value 4.53 years as measured in the Earth 
frame. This example illustrates the famous idea that astronaut wristwatch time 
—  proper time — between two events is less than the time between these events 
measured by any other observer in relative motion. Travel to stay young! This 
result comes simply and naturally from the invariance of the interval.
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1.5 UNITY OF SPACETIME
time and space: equal footing but distinct nature

When time and space are measured in the same unit— whether meter or second or 
year— the expression for the square of the spacetime interval between two events 
takes on a particularly simple form:

(interval)^ =  (time separation)^ — (space separation)^
=  ,2 _  „2 [same units for time and space]

This formula shows forth the unity of space and time. Impressed by this unity, 
Einstein’s teacher Hermann Minkowski (1864-1909) wrote his famous words, 
“Henceforth space by itself, and time by itself, are doomed to fade away into mere 
shadows, and only a union of the two will preserve an independent reality. ’ ’ Today this 
union of space and time is called spacetime. Spacetime provides the tme theater for

Spacetime is a unity
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PAYOFF OF THE PARABLE
from distance in space to interval in spacetime

DISCUSSION
Location marker

General name for such a location 
marker
Can its location be staked out for all 
to see, independent of any scheme 
of measurement, and independent 
of all numbers?
Simple descriptor of separation 
between two location markers
Are there ways directly to measure 
this separation?
With enough markers already 
staked out, how can we tell some­
one where we want the next one?
Instead of boldly staking out the 
new marker, or instead of position­
ing it relative to existing markers, 
how else can we place the new 
marker?
Nature of this reference frame?

How do two such reference frames 
differ from o n e  a n o th e r?

What are names of two such possi­
ble reference frames?

What common unit simplifies analy­
sis of the results?
What is the conversion factor from 
conventional units to meters?

SURVEYING TOWNSHIP
Steel stake driven in ground

Point or place

Yes

Distance

Yes

ANALYZING NATURE
Collision between two particles 
Emission of flash from atom 
Spark jumping from antenna to pen
Event

Yes

Spacetime interval

Yes

Specify distances from other Specify spacetime intervals from
points. other events.

By locating point relative to a refer- By locating event relative to a ref­
ence frame erence frame

Surveyor’s grid yields northward 
and eastward readings of point 
(Chapter 1).

Is such a reference frame unique? No
Tilt of one surveyor’s grid relative 
to the other
Daytime grid: oriented to magnetic 
north
Nighttime grid: oriented to North- 
Star north
The unit meter for both northward 
and eastward readings
Converting miles to meters: 
k =  1609.344 meters/mile

Lattice frame of rods and clocks 
yields space and time readings of 
event (Chapter 2).
No
Uniform velocity of one frame rela­
tive to the other
Laboratory frame 
Rocket frame

The unit meter for both space and 
time readings
Converting seconds to meters using 
the speed of light: 
c = 299,792,458 meters/second
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DISCUSSION

For convenience, all measurements 
are referred to what location?
How do readings for a single 
marker differ between two refer­
ence frames?

When we change from one marker 
to two, how do we specify the offset 
between them in reference-frame 
language?
How to figure from offset readings 
a measure of separation that has 
the same value whatever the choice 
of reference frame?
Figure how?

Result of this reckoning?

Phrase to summarize this identity of 
separation as figured in two refer­
ence frames?
Conclusions from this analysis?

SURVEYING TOWNSHIP 

A common origin (center of town)

Individual northward and eastward 
readings for one point —  for one 
steel stake —  do not have the same 
values respectively for two survey­
ors’ grids that are tilted relative to 
one another.
Subtract: Figure the difference be­
tween eastward readings of the 
two points; also the difference in 
northward readings.
Figure the distance between the 
two points.

(distance)^ =
/ difference in V  
\northward readings/

_l_ / difference in V  
\eastw ard readings/

Distance between points as figured 
from readings using one surveyor’s 
grid is the same as figured from 
readings using a second surveyor’s 
grid tilted with respect to first grid.

Invariance of the distance between 
points

(1) Northward and eastward di­
mensions are part of a single entity: 
space.
(2) Distance is the simple measure 
of separation between two points, 
natural because invariant: the same 
for different surveyor grids.

ANALYZING NATURE 

A common event (reference spark)

Individual space and time readings 
for one event —  for one spark —  
do not have the same values re­
spectively for two frames that are in 
motion relative to one another.

Subtract: Figure the difference be­
tween space readings of the two 
events; also the difference in time 
readings.
Figure the spacetime interval be­
tween the two events.

(interval)^ =
/ difference in V  
\time readings/

_  / difference in 
\space readings/

Interval between events as figured 
from readings using one lattice- 
work frame is the same as figured 
from readings using a second 
frame in steady straight-line motion 
relative to first frame.
Invariance of the spacetime inter­
val between events.

(1) Space and time dimensions are 
part of a single entity: spacetime.

(2) Spacetime interval is the simple 
measure of separation between 
two events, natural because invar­
iant: the same for different refer­
ence frames.
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Difference between 
time and space

every event in the lives of stars, atoms, and people. Space is different for different 
observers. Time is different for different observers. Spacetime is the same for everyone.

Minkowski’s insight is central to the understanding of the physical world. It focuses 
attention on those quantities, such as spacetime interval, electrical charge, and particle 
mass, that are the same for all observers in relative motion. It brings out the merely 
relative character of quantities such as velocity, momentum, energy, separation in 
time, and separation in space that depend on relative motion of observers.

Today we have learned not to overstate Minkowski’s argument. It is right to say 
that time and space are inseparable parts of a larger unity. It is wrong to say that time is 
identical in quality with space.

Why is it wrong? Is not time measured in meters, just as space is? In relating the 
positions of two steel stakes driven into the ground, does not the surveyor measure 
northward and eastward separations, quantities of identical physical character? By 
analogy, in locating two events is not the observer measuring quantities of the same 
nature: space and time separations? How else could it be legitimate to treat these 
quantities on an equal footing, as in the formula for the interval?

Equal footing, yes; same nature, no. There is a minus sign in the formula for the 
interval squared =  (time separation)^ — (space separation)^ that no sleight of hand 
can ever conjure away. This minus sign distinguishes between space and time. No 
twisting or turning can ever give the same sign to real space and time separations in 
the expression for the interval.

The invariarxe of the spacetime interval evidences the unity of space and time while 
also preserving —  in the formula’s minus sign —  the distinction between the two.

The principles of special relativity are remarkably simple— simpler than the 
axioms of Euclidean geometry or the principles of operating an automobile. Yet both 
Euclid and the automobile have been mastered— perhaps with insufficient surprise 
—  by generations of ordinary people. Some of the best minds of the twentieth century 
stmggled with the concepts of relativity, not because nature is obscure, but because (1) 
people find it difficult to outgrow established ways of looking at namre, and (2) the 
world of the very fast described by relativity is so far from common experience that 
everyday happenings are of limited help in developing an intuition for its descriptions.

By now we have won the battle to put relativity in understandable form. The 
concepts of relativity can now be expressed simply enough to make it easy to think 
correctly —  “to make the bad difficult and the good easy. ’’ This leaves only the second 
difficulty, that of developing intuition —  a practiced way of seeing. We understand 
distance intuitively from everyday experience. Box 1.1 applies our intuition for 
d istance in  space to help our intuition for in terval in spacetim e.

To put so much into so little, to subsume all of Einstein’s teaching on light and 
motion in the single word spacetime, is to cram a wealth of ideas into a small picnic 
basket that we shall be unpacking throughout the remainder of this book.

REFERENCES
Introductory quote: Richard P. Feynman, The Character of Physical Law (MIT 
Press, Cambridge, Mass., 1967), page 127.

Quote from Minkowski in Section 1.5: H. A. Minkowski, “Space and Time,” in 
H. A. Lorentz et al., The Principle of Relativity (Dover Publications, New York, 
1952), page 75.
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INTRODUCTION TO THE EXERCISES

Important areas of current research can be analyzed 
very simply using the theory of relativity. This analy­
sis depends heavily on a physical intuition, which 
develops with experience. Wide experience is not easy 
to obtain in the laboratory— simple experiments in 
relativity are difficult and expensive because the speed 
of light is so great. As alternatives to experiments, the

exercises and problems in this text evoke a wide range 
of physical consequences of the properties of space- 
time. These properties of spacetime recur here over 
and over again in different contexts:

• paradoxes

• puzzles
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• derivations

• technical applications

• experimental results

• estimates

• precise calculations

• philosophical difficulties

The text presents all formal tools necessary to solve 
these exercises and problems, but intuition —  a prac­
ticed way of seeing — is best developed without 
hurry. For this reason we suggest continuing to do 
more and more of these exercises in relativity after you 
have moved on to material outside this book. The 
mathematical manipulations in the exercises and 
problems are very brief: only a few answers take more

than five lines to write down. On the other hand, the 
exercises require some “ruminarion time.”

In some chapters, exercises are divided inro rwo 
categories. Practice and Problems. The Practice exer­
cises help you to get used to ideas in the text. The 
Problems apply these ideas to physical systems, 
thought experiments, and paradoxes.

wheeler’s first moral principle: Never make 
a calculation until you know the answer. Make an 
estimate before every calculation, try a simple physical 
argument (symmetry! invariance! conservation!) be­
fore every derivation, guess the answer to every para­
dox and puzzle. Courage: No one else needs to know 
what the guess is. Therefore make ir quickly, by 
instinct. A right guess reinforces this instinct. A wrong 
guess brings the refreshment of surprise. In eirher case 
life as a spacetime expert, however long, is more fun!

CHAPTE3R 1 EXERCISES

PRACTICE
1-1 comparing speeds
Compare the speeds of an automobile, a jet plane, an 
Earth satellite. Earth in its orbit around Sun, and a 
pulse of light. Do this by comparing the relative 
distance each travels in a fixed time. Arbitrarily 
choose the fixed time to give convenient distances. A 
car driving at the USA speed limit of 65 miles/hour 
(105 kilometers/hour) covers 1 meter of distance in 
about 35 milliseconds =  35 X 10“  ̂ second.

a How far does a commercial jetliner go in 35 
milliseconds? (speed: 650 miles/hour =  1046 
kilometers/hour)

b How far does an Earth satellite go in 3 5 milli­
seconds? (speed: 17,000 miles/hour ~  27,350 
kilometers/hour)

C How far does Earth travel in its orbit around 
Sun in 35 milliseconds? (speed: 30 kilometers/se- 
cond)

d How far does a light pulse go in a vacuum in 
35 milliseconds? (speed: 3 X 10® meters /second). 
This distance is roughly how many times the distance 
from Boston to San Erancisco (5000 kilometers)?

1 -2 images from Neptune
At 9:00 P.M. Pacific Daylight Time on August 24, 
1989, the planetary probe Voyager 11 passed by the 
planet Neptune. Images of the planet were coded and 
rransmitted to Earth by microwave relay.

It took 4 hours and 6 minutes for this microwave 
signal to travel from Neptune to Earth. Microwaves 
(electromagneric radiation, like light, but of fre­
quency lower than that of visible light), when propa­
gating through interplanetary space, move at the 
‘ ‘standard ’ ’ light speed of one meter of distance in one 
meter of light-travel time, or 299,792,458 meters/ 
second. In the following, neglect any relative motion 
among Earth, Neptune, and Voyager 11.

a  Calculate the distance between Earth and 
Neptune at fly-by in units of minutes, seconds, years, 
meters, and kilometers.

b Calculate the time the microwave signal takes 
to reach Earth. Use the same units as in part a.

1 -3 units of spacetime
Light moves at a speed of 3.0 X 10® meters/second. 
One mile is approximately equal to 1600 meters. 
One furlong is approximately equal to 200 meters.
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a  How many meters of time in one day? 
b How many seconds of distance in one mile? 
c How many hours of distance in one furlong? 
d How many weeks of distance in one light-year? 
e How many furlongs of time in one hour?

1 >4 time stretching and the 
spacetime interval

A rocket clock emits two flashes of light and the 
rocket observer records the time lapse (in seconds) 
between these two flashes. The laboratory observer 
records the time separation (in seconds) and space 
separation (in light-seconds) between the same pair of 
flashes. The results for both laboratory and rocket 
observers are recorded in the first line of the table.

Now a clock in a different rocket, moving at a 
different speed with respect to the laboratory, emits a 
different pair of flashes. The set of laboratory and 
rocket space and time separations are recorded on the

■<̂ [̂ [e X E R C IS E

SPACE AND TIME SEPARATIONS
Rocket 

time lapse 
(seconds)

Laboratory 
time lapse 
(seconds)

Laboratory
distance

(light-seconds)

Example 20 29 21

a > 10.72 5.95
b 20 99
c 66.8 72.9 p

d ? 8.34 6.58
e 21 22 ?

second line of the table. And so on. Complete the 
table.

1 -5 where and when?
Two firecrackers explode at the same place in the 
laboratory and are separated by a time of 3 years as 
measured on a laboratory clock.

a  What is the spatial distance between these two 
events in a rocket in which the events are separated in 
time by 5 years as measured on rocket clocks?

b What is the relative speed of the rocket and 
laboratory frames?

1 -6 mapmaking in space
The table shows distances between cities. The units 
are kilometers. Assume all cities lie on the same flat 
plane.

a Use a ruler and a compass (the kind of compass 
that makes circles) to construct a map of these cities. 
Choose a convenient scale, such as one centimeter on 
the map corresponds to ten kilometers on Earth.

Discussion: How to start? With three arbitrary 
decisions! (1) Choose any city to be at the center of the 
map. (2) Choose any second city to be “due north” 
—  that is, along any arbitrary direction you select. (3) 
Even with these choices, there are two places you can 
locate the third city; choose either of these two places 
arbitrarily.

b If you rotate the completed map in its own 
plane —  for example, turning it while keeping it flat 
on the table— does the resulting map also satisfy the 
distance entries above?

C Hold up your map between you and a light, 
with the marks on the side of the paper facing rhe

C ^ ^ ^ X E R C I S E  -----

DISTANCES BETWEEN CITIES
Distance
to city A B C D E F G H

from city
A 0 20.0 28.3 28.3 28.3 20.0 28.3 44.7
B 0 20.0 20.0 44.7 40.0 44.7 40.0
C 0 40.0 40.0 44.7 56.6 60.0
D 0 56.6 44.7 40.0 20.0
E 0 20.0 40.0 72.1

F 0 20.0 56.6

G 0 44.7
H 0
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light. Does the map you see from the back also satisfy 
the table entries?

Discussion: In this exercise you use a table con­
sisting only of distances between pairs of cities to 
construct a map of these cities from the point of view 
of a surveyor using a given direction for north. In 
Exercise 5-3 you use a table consisting only of space- 
time intervals between pairs of events to draw a 
“spacetime map” of these events from the point of 
view of one free-float observer. Exercise 1-7 previews 
this kind of spacetime map.

1 -7 spacetime map
The laboratory space and time measurements of 
events 1 through 5 are plotted in the figure. Compute 
the value of the spacetime interval 

a between event 1 and event 2. 
b between event 1 and event 3. 
c between event 1 and event 4. 
d between event 1 and event 5. 
e A rocket moves with constant velocity from 

event 1 to event 2. That is, events 1 and 2 occur at the 
same place in this rocket frame. What time lapse is 
recotded on the rocket clock between these two 
events?

t
time

(meters)

event
2

event
4

event '3

event

event
1,

0 1 2 3 4 5 6
-----space (meters) — ►

EXERCISE 1 -7. Spacetime map of some events.

PROBLEMS
1 -8 size off a computer
In one second some desktop computers can carry out 
one million instructions in sequence: One instruction 
might be, for instance, multiplying two numbers to­
gether. In technical jargon, such a computer operates 
at “one megaflop.” Assume that carrying out one

instruction requires transmission of data from the 
memory (where data is stored) to the processor (where 
the computation is carried out) and transmission of 
the result back to the memory for storage.

a  What is the maximum average distance be­
tween memory and processor in a “one-megaflop” 
computer? Is this maximum distance increased or 
decreased if the signal travels through conductors at 
one half the speed of light in a vacuum?

b Computers are now becoming available that 
operate at “one gigaflop,” that is, they carry out 10  ̂
sequential instructions per second. What is the maxi­
mum average distance between memory and proces­
sor in a “one-gigaflop” machine?

c Estimate the overall maximum size of a “one- 
teraflop” machine, that is, a computer that can carry 
out 10*  ̂sequential instructions per second.

d Discussion question: In contrast with most 
current personal computers, a “parallel processing” 
computer contains several or many processors that 
work together on a computing task. One might think 
that a machine with 10,000 processors would com­
plete a given computation task in 1/10,000 the time. 
However, many computational problems cannot be 
divided up in this way, and in any case some fraction 
of the computing capacity must be devoted to coordi­
nating the team of processors. What limits on physi­
cal size does the speed of light impose on a parallel 
processing computer?

1 -9 trips to Andromeda by 
rocket

The Andromeda galaxy is approximately two million 
light-years distant from Earth as measured in the 
Earth-linked frame. Is it possible for you to travel 
from Earth to Andromeda in your lifetime? Sneak up 
on the answer to this question by considering a series 
of trips from Earth to Andromeda, each one faster 
than the one before. For simplicity, assume the Earth- 
Andromeda distance to be exactly two million light- 
years in the Earth frame, treat Earth and Andromeda 
as points, and neglect any relative motion between 
Earth and Andromeda.

a  TRIP 1. Your one-way trip takes a time 2 .01 X 
10^ years (measured in the Earth-linked frame) to 
cover the distance of 2.00 X 10^ light-years. How 
long does the trip last as measured in your rocket 
frame?

b What is your rocket speed on Trip 1 as mea­
sured in the Earth-linked frame? Express this speed as 
a decimal fraction of the speed of light. Call this 
fraction, p =  where is speed in conven­
tional units, such as meters/second. Discussion: If 
your rocket moves at half the speed of light, it takes
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4 X 10^ years to cover the distance 2 X 10^ light- 
years. In this case

2 X 10^ light-years 
4 X 10^ years

1

Therefore . . .
c TRIP 2. Your one-way Earth-Andromeda trip 

takes 2.001 X 10® years as measured in the Earth- 
linked frame. How long does the trip last as measured 
in your rocket frame? What is your rocket speed for 
Trip 2, expressed as a decimal fraction of the speed of 
light?

d TRIP 3. Now set the rocket time for the one­
way trip to 20 years, which is all the time you want to 
spend getting to Andromeda. In this case, what is 
your speed as a decimal fraction of the speed of light? 
Discussion: Solutions to many exercises in this text 
are simplified by using the following approximation, 
which is the first two terms in the binomial expansion

(1 -b z)” ~  1 + nz l «  1

Here n can be positive or negative, a fraction or an 
integer; z can be positive or negative, as long as its 
magnitude is very much smaller than unity. This 
approximation can be used twice in the solution to 
part d.

1-10 trip to Andromeda by 
Transporter

In the Star Trek series a so-called Transporter is used 
to “beam” people and their equipment from a star- 
ship to the surface of nearby planets and back. The 
Transporter mechanism is not explained, but it ap­
pears to work only locally. (If it could transport to 
remote locations, why bother with the starship at all?) 
Assume that one thousand years from now a Trans­
porter exists that reduces people and things to data 
(elementary bits of information) and transmits the 
data by light or radio signal to remote locations. There 
a Receiver uses the data to reassemble travelers and 
their equipment out of local raw materials.

One of your descendants, named Samantha, is the 
first “transporternaut” to be beamed from Earth to 
the planet Zircon orbiting a star in the Andromeda 
Nebula, two million light-years from Earth. Neglect 
any relative motion between Earth and Zircon, and 
assume: (1) transmission produces a Samantha iden­
tical to the original in every respect (except that she is 
2 million light-years from home!), and (2) the time 
required for disassembling Samantha on Earth and 
reassembling her on Zircon is negligible as measured

in the common rest frame of Transporter and Re­
ceiver.

a  How much does Samantha age during her 
outward trip to Zircon?

b Samantha collects samples and makes obser­
vations of the Zirconian civilization for one Earth- 
year, then beams back to Earth. How much has Sa­
mantha aged during her entire trip?

C How much older is Earth and its civilization 
when Samantha returns?

d Earth has been taken over by a tyrant, who 
wishes to invade Zircon. He sends one warrior and has 
him duplicated into attack battalions at the Receiver 
end. How long will the Earth tyrant have to wait to 
discover whether his ambition has been satisfied?

e A second transporternaut is beamed to a much 
more remote galaxy that is moving away from Earth 
at 87 percent of the speed of light. This time, too, the 
traveler stays in the remote galaxy for one year as 
measured by clocks moving with the galaxy before re­
turning to Earth by Transporter. How much has the 
transporternaut aged when she arrives back at Earth? 
(Careful!)

1-11 time stretching with 
muons

At heights of 10 to 60 kilometers above Earth, cosmic 
rays continually strike nuclei of oxygen and nitrogen 
atoms and produce muons (muons: elementary parti­
cles of mass equal to 207 electron masses produced in 
some nuclear reactions). Some of the muons move 
vertically downward with a speed nearly that of light. 
Follow one of the muons on its way down. In a given 
sample of muons, half of them decay to other ele­
mentary particles in 1.5 microseconds (1.5 X 10~® 
seconds), measured with respect to a reference frame 
in which they are at rest. Half of the remainder decay 
in the next 1.5 microseconds, and so on. Analyze the 
results of this decay as observed in two different 
frames. Idealize the rather complicated acmal experi­
ment to the following roughly equivalent situation: 
All the muons are produced at the same height (60 
kilometers); all have the same speed; all travel straight 
down; none are lost to collisions with air molecules on 
the way down.

a  Approximately how long a time will it take 
these muons to reach the surface of Earth, as mea­
sured in the Earth frame?

b If the decay time were the same for Earth 
observers as for an observer traveling with the muons, 
approximately how many half-lives would have 
passed? Therefore what fraction of those created at a 
height of 60 kilometers would remain when they



2 4  EXERCISE 1- 12 TIME STRETCHING WITH 7T+-MES0NS

reached sea level on Earth? You may express your 
answer as a power of the fraction 1/2.

c An experiment determines that the fraction 
1 /8  of the muons reaches sea level. Call the rest frame 
of the muons the rocket frame. In this rocket frame, 
how many half-lives have passed between creation of 
a given muon and its arrival as a survivor at sea level?

d In the rocket frame, what is the space separation 
between birth of a survivor muon and its arrival at the 
surface of Earth? (Careful!)

e From the rocket space and time separations, 
find the value of the spacetime interval between the 
birth event and the arrival event for a single surviving 
muon.
Reference: Nalini Easwar and Douglas A. Macintire, American Jour­
nal of Physics, Volume 59, pages 5 8 9 -5 9 2  (July 1991).

1-12 time stretching with 
TT̂ -mesons

Laboratory experiments on particle decay are much 
more conveniently done with TT^-mesons (pi-plus 
mesons) than with //-mesons, as is seen in the table.

In a given sample of TT^-mesons half will decay to 
other elementary particles in 18 nanoseconds (18 X 
10“^ seconds) measured in a reference frame in which 
the TT^-mesons are at rest. Half of the remainder will 
decay in the next 18 nanoseconds, and so on.

a In a particle accelerator TT^-mesons are pro­
duced when a proton beam strikes an aluminum

TIME STRETCHING WITH 7T+-MES0NS
"Characteristic distance”

Time for half to (speed of light
decay (measured multiplied by

Particle in rest frame) foregoing time)

muon 1.5 X 10"^ second 450 meters
(207 times 
electron mass) 
TT̂ -meson 
(273 times 
electron mass)

18 X 10“* second 5.4 meters

target inside the accelerator. Mesons leave this target 
with nearly the speed of light. If there were no time 
stretching and if no mesons were removed from the 
resulting beam by collisions, what would be the 
greatest distance from the target at which half of 
the mesons would remain undecayed?

b The TT^-mesons of interest in a particular ex­
periment have a speed 0.9978 that of light. By what 
factor is the predicted distance from the target for 
half-decay increased by time dilation over the 
previous prediction —  that is, by what factor does this 
dilation effect allow one to increase the separation 
between the detecting equipment and target?
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FLOATING FREE
A t that moment there came to me the happiest 

thought of my life . . . for an observer falling freely 
from the roof of a house no gravitational field exists 
during his fa ll . . .

Albert Einstein

2.1 FLOATING TO M OON
will the astronaut stand on the floor— or float?

Less than a month after the surrender at Appomattox ended the American Civil War 
(1861-1865), theFrenchauthorJulesV erne began writing A Trip From the Earth to 
the Moon and A Trip Around the Moon. Eminent American cannon designers, so the 
story goes, cast a great cannon in a pit, with cannon muzzle pointing skyward. From 
this cannon they fire a ten-ton projectile containing three men and several animals 
(Figure 2-1).

As the projectile coasts outward in unpowered flight toward Moon, Verne says, irs 
passengers walk normally inside the projectile on the end nearer Earth (Figure 2-2). As 
the trip continues, passengers find themselves pressed less and less against the floor of 
the spaceship until finally, at the point where Earth and Moon exert equal but opposite 
gravitational attraction, passengers float free of the floor. Later, as the ship nears 
Moon, they walk around once again —  according to Verne —  but now against the end 
of the spaceship nearer Moon.

Early in the coasting portion of the trip a dog on the ship dies from injuries susrained 
at takeoff. Passengers dispose of its remains through a door in the spaceship, only to 
find the body floating outside the window during the entire trip (Figure 2-1).

This story leads to a paradox whose resolution is of crucial importance to relativity. 
Verne thought it reasonable that Earth’s gravitational attraction would keep a passen­
ger pressed against the Earth end of the spaceship during the early part of the trip. He 
also thought it reasonable rhat the dog should remain next to the ship, since both ship 
and dog independently follow the same path through space. But since the dog floats 
outside the spaceship during the entire trip, why doesn’t the passenger float around 
inside the spaceship? If the ship were sawed in half would the passenger, now 
"outside,” float free of the floor?

Jules Verne:
Passenger stands on floor

Paradox of passenger and dog

25
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AN INCORRECT PREDICTION

> TIIK m>l)Y OK SATKI.I.ITE.

FIGURE 2-1. I l lu s t r a t io n  f r o m  a n  
e a r ly  e d i t io n  o f  K  T r ip  A ro u n d  the 
M oon. Satellite  is the name o f  the unfor­
tu n a te  dog.

Point of equal 
gravitational ^  
attrartion A

THE CORRECT PREDICTION

FIGURE 2-2. In c o rr e c t p r e d ic t io n :  Ju le s  Verne believed th a t a  passenger inside a  free projectile would  
s ta n d  aga inst the end o f  the projectile nearest E arth  or Moon, w hichever h a d  greater g ra v ita tio n a l  
a ttraction  —  h u t th a t the dog w ould  jio a t along beside the projectile fo r  the entire trip . C o rre c t p r e d ic t io n :  
Verne w as r igh t about the dog, bu t a  passenger also flo a ts  w ith  respect to the free  projectile d uring  the entire  
trip .

Reality;
P a s s e n g e r  f lo a ts  in sp a c e s h ip

Our experience with actual space flights enables us to resolve this paradox (Figure
2-2). Jules Verne was wrong about the passenger’s motion inside the unpowered 
spaceship. Like the dog outside, the passenger inside independently follows the same 
path through space as the spaceship itself. Therefore he floats freely relative to the ship 
during the entire trip (after the initial boost inside the cannon barrel). True: Earth’s 
gravity acts on the passenger. But it also acts on the spaceship. In fact, with respect to 
Earth, gravitational acceleration of the spaceship just equals gravitational acceleration 
of the passenger. Because of this equality, there is no relative acceleration between 
passenger and spaceship. Thus the spaceship serves as a reference fram e relative to 
which the passenger does not experience any acceleration.

To say that acceleration of the passenger relative to the unpowered spaceship equals 
zero is not to say that his velocity relative to it necessarily also equals zero. He may jump 
from the floor or spring from the side— in which case he hurtles across the spaceship 
and strikes the opposite wall. However, when he floats with zero initial velocity 
relative to the ship the situation is particularly interesting, for he will also float with 
zero velocity relative to it at all later times. He and the ship follow identical paths 
through space. How remarkable that the passenger, who cannot see outside, never­
theless moves on this deterministic orbit! Without a way to control his motion and 
even with his eyes closed he will not touch the wall. How could one do better at 
eliminating detectable gravitational influences?

2.2 THE INERTIAL (FREE-FLOAT) FRAME
goodbye to the "force of gravity"

It is easy to talk about the simplicity of motion in a spaceship. It is hard to think of 
conditions being equally simple on the surface of Earth (Figure 2-3). The reason for
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recovery
apparatus

release
apparatus

capsule

mechanical
braking

shock-

release mechanism 
thruster nozzle

■ thruster gas tanks

inner cylinder 
release mechanism

■ inner cylinder 
for experiments

shock absorbers

data transmission 
and batteries

FIGURE 2-3. T h e  J a p a n  M ic r o g r a v i ty  C e n te r  ( J A M I C )  i n s ta l l e d  i n  a n  a b a n d o n e d  c o a l m in e  
7 1 0  m e te r s  d e e p  in  th e  s m a l l  to w n  o f  K a m is u n a g a w a  on  th e  n o r th e r n  i s la n d  o f  H o k k a id o ,  

J a p a n .  The capsule carrying the experim ental apparatus provides a  free-float fra m e  fo r  10  seconds as i t  fa lls  
4 9 0  meters through a  vertica l tube, achieving a  m axim um  velocity o f  nearly 1 0 0  m etersj second. I t  is  g u ided  
by tw o contact-free m agnetic suspensions along the tube. The vertica l tube is  not evacuated; dow nw ard-  
th rusting  gas je ts  on the capsule compensate fo r  a ir  drag as the capsule drops. The capsule is slowed down in  
an  a d d itio n a l distance o f 2 0 0  meters near the bottom o f  the tube by a ir  resistance a fter  thrusters are turned  
off, fo llow ed by m echanical braking. T w en ty  meters o f  cushioning m a ter ia l a t  the very bottom o f  the tube 
provide emergency stopping. The fa l l in g  capsule is  nearly 8  meters long a n d  nearly 2  meters in  d iam eter w ith  
a  mass o f  5 0 0 0  kilograms, includ ing  1 0 0 0  kilogram s o f  experim ental equipm ent contained in  an  inner  
cylinder 1 .3  meters in  d iam eter a n d  1 .8  meters long. The space between capsule a n d  experim ental cylinder is 
evacuated. The inner experim ental cylinder is released ju s t  before the outer capsule itself. O ptical m onitoring  
o f  the vertica l position o f  the inner cylinder triggers dow nw ard-push ing  thrusters as needed to overcome a ir  
resistance. T h u s the experim ental cylinder i ts e lf  acts as an  in terna l “conscience," ensuring th a t the capsule 
takes the same course th a t i t  w ould  have taken  h a d  both resistance a n d  thrust been absent. The result? A  
nearly free-float fram e , w ith  a  m axim um  acceleration o f  1 .0  54 10~^ g  in  the experim ental capsule, where 
g is  the acceleration o f  g ra v ity  a t  E a rth ’s surface. Experim ents carried out in  th is  fa c i l i ty  benefit from  
conditions o f  “no a ir  pressure, no heat convection, no flo a tin g  or s in k in g  buoyancy, no resistance to m otion ,"  
as w ell as m uch lower cost a n d  less environm ental dam age than  those involved in  launch ing  a n d  m onitoring  
an E arth  sa tellite. The fa c i l i ty  is designed to carry out 4 0 0  drops per year, w ith  experiments such as fo rm ing  
large superconducting crystals, creating alloys o f  m aterials th a t do not normally m ix , stu d y in g  transitions  
between gas a n d  l iq u id  phases, a n d  burning  under zero-g. (See also Figure 9 -2 .)
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FIGURE 2-4. I l lu s io n  a n d  R e a l i ty ,  The same ba ll thrown from  the same com er o f  the same room in  the 
same direction w ith  the same speed is seen to undergo very d ifferent motions depending on whether i t  is 
recorded by a n  observer w ith  a  floor push ing  up aga inst h is fe e t or by an  observer in  “free  f a l l "  ( “free f lo a t”) 
in  a  house saw ed free from  the cliff. In  both descriptions the ba ll arrives a t  the same p lace— rela tive to 
M other E a rth — a t the same in stan t. Let each ba ll squ ir t a  je t  o f  in k  on the w a ll we are looking a t. The 
resulting record is as crisp fo r  the arc as fo r  the stra igh t line. Is the arc real a n d  the stra igh t line  illusion? Or 
is the stra igh t line real a n d  the arc illusion? E instein  tells us th a t the two in k  tra ils  are equally va lid . W e 
have only to be honest a n d  say whether the house, the w all, a n d  the describes o f  the motion are in  free flo a t or 
whether the describer is continually being driven  aw a y  from  a  condition o f  free flo a t by a  push  aga inst his  
fee t. E instein also tells us th a t physics a lw ays looks simplest in  a  free-float fram e . F inally, he tells us th a t  
every tru ly  local m anifesta tion  o f  “g ra v ity "  can be elim ina ted  by observing motion from  a  fra m e  o f  reference 
th a t is in  free  floa t.

Concept of free-float frame

concern is not far to seek. We experience it every day, every minute, every second. We 
call it gravity. It shows in the arc of a ball tossed across the room (Figure 2-4, left). 
How can anyone confront a mathematical curve like that arc and not be trapped again 
in that tortuous trail of thought that led from ancient Greeks to Galileo to Newton? 
They thought of gravity as a force acting through space, as something mysterious, as 
something that had to be “explained.”

Einstein put forward a revolutionary new idea. Eliminate gravity!
Where lies the cause of the curved path of the ball? Is it the ball? Is it some 

mysterious “force of gravity”? Neither, Einstein tells us. It is the fault of the viewers 
— and the fault of the floor that forces us away from the natural state of motion: the 
state of free fall, or better put, free float. Remove the floor and our motion 
immediately becomes natural, effortless, free from gravitational effects.

Let the room be cut loose at the moment we throw the ball slantwise upward from 
rhe west side at floor level (Figure 2-4, right). The ball has the same motion as it did 
before. However, the motion looks different. It looks different because we who look at 
it are in a different frame of reference. We are in a free-float fram e. In this free-float 
frame the ball has straight-line motion. What could be simpler?

Even when the room was not cut away from the cliff, the floor did not affect the 
midair flight of the ball. But the floor did affect us who watched the flight. The floor 
forced us away from our natural motion, the motion of free fall (free float). We 
blamed the curved path of the ball on the “force of gravity” acting on the ball. Instead 
we should have blamed the floor for its force acting on us. Better yet, get rid of the floor 
by cutting the house away from the cliff. Then our point of view becomes the natural 
one: We enter a free-float frame. In our free-float frame the ball flies straight.
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What’s the fault of the force on my feet? 
What pushes my feet down on the floor? 
Says Newton, the fa u lt’s at Earth’s core. 
Einstein says, the fa u lt’s with the floor; 
Remove that and gravity’s beat!

—  Frances Towne Ruml

How could humankind have lived so many centuries without realizing that the 
“arc” is an unnecessary distraction, that the idea of local “gravity” is superfluous — 
the fault of the observer for not arranging to look at matters from a condition of free 
float?

Even today we recoil instinctively from the experience of free float. We and a 
companion ride in the falling room, which does not crash on the ground but drops into 
a long vertical tunnel dug for that purpose along the north-south axis of Earth. Our 
companion is so filled with consternation that he takes no interest in our experimental 
findings about free float. He grips the door jamb in terror. “W e’re falling!” he cries 
out. His fear turns to astonishment when we tell him not to worry.

“A shaft has been sunk through Earth,” we tell him. “ It’s not the fall that hurts 
anyone but what stops the fall. All obstacles have been removed from our way, 
including air. Free fall,” we assure him, “is the safest condition there is. That’s why we 
call it free float.”

“You may call it float,” he says, “but I still call it fall.”
“Right now that way of speaking may seem reasonable,” we reply, “but after we 

pass the center of Earth and start approaching the opposite surface, won’t the word 
‘fair seem rather out of place? Might you not then prefer the word ‘float’?” And with 
“ float” our companion at last is happy.

What do we both see? Weightlessness. Free float. Motion in a straight line and at 
uniform speed for marbles, pennies, keys, and balls in free motion in any direction 
within our traveling home. No jolts. No shudders. No shakes at any point in all the 
long journey from one side of Earth to the other.

For our ancestors, travel into space was a dream beyond realization. Equally beyond 
our reach today is the dream of a house floating along a tunnel through Earth, but this 
dream nonetheless illuminates the simplicity of motion in a free-float frame. Given the 
necessary conditions, nothing that we observe inside our traveling room gives us the 
slightest possibility of discriminating among different free-float frames: one just above 
Earth’s surface, a second passing through Earth’s interior, a third in the uttermost 
reaches of space. Floating inside any of them we find no evidence whatever for the 
presence of “gravity.”

Free-float through Earth

W a i t  a  m in u te !  I f  th e  id e a  o f  lo ca l “g r a v i t y ” is  u nnecessary , w h y  does m y  p e n c i l  beg in  

to f a l l  w h e n  I  h o ld  i t  in  th e  a i r  a n d  le t  go ?  I f  there  is  no g r a v i ty ,  m y  p e n c i l  sh o u ld  re m a in  

a t  rest.

And so it does remain at test —  as observed from a free-float frame! The natural 
motion of your pencil is to remain at rest or to move with constant velocity in a 
free-float frame. So it is not helpful to ask: “Why does the pencil begin to fall when I 
let go? ” A more helpful question: “Before I let go, why must I apply an upward force 
to keep the pencil at rest?” Answer: Because you are making observations from an 
unnatural frame: one held fixed at the surface of Earth. Remove that fixed hold by 
dropping your room off a cliff. Then for you “gravity” disappears. For you, no force 
is required to keep the pencil at rest in your free-float frame.
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Earth’s pull nonuniform: 
Large spaceship  

not a free-float frame

2.3 LOCAL CHARACTER OF FREE-FLOAT 
FRAME

tidal effects intrude in larger domains
First to strike us about the concept free float has been its paradoxical character. As a 
first step to explaining gravity Einstein got rid of gravity. There is no evidence of 
gravity in the freely falling house.

Well, almost no evidence. The second feature of free float is its local character. 
Riding in a very small spaceship (Figure 2-5, left) we find no evidence of gravity. But 
the enclosure in which we ride— falling near Earth or plunging through Earth — 
cannot be too large or fall for too long a time without some unavoidable relative 
changes in motion being detected between particles in the enclosure. Why? Because 
widely separated particles within a large enclosed space are differently affected by the 
nonuniform gravitational field of Earth, to use the Newtonian way of speaking. For 
example, two particles released side by side are both attracted toward the center of 
Earth, so they move closer together as measured inside a falling long narrow horizontal 
railway coach (Figure 2-5, center). This has nothing to do with “gravitational attrac­
tion’’ between the particles, which is entirely negligible.

As another example, think of two particles released far apart vertically but directly 
above one another in a long narrow vertical falling railway coach (Figure 2-5, right). 
This time their gravitational accelerations toward Earth are in the same direction.

FIGURE 2-5. T h r e e  v e h ic le s  i n  f r e e  f a l l  n e a r  E a r th :  s m a l l  sp a ce  c a p su le , E in s t e in ’s  o ld - fa ­
s h io n e d  r a i lw a y  coach in  f r e e  f a l l  in  a  ho rizon ta l o r ie n ta t io n , a n d  a n o th e r  r a i l w a y  coach  in  
ve rtica l o r ie n ta tio n .
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according to the Newtonian analysis. However, the particle nearer Earth is more 
strongly attracted to Earth and slowly leaves the other behind: the two particles move 
farther apart as the coach falls. Conclusion: the latge enclosure is not a free-float frame.

Even a small room fails to qualify as free-float when we sample it over a long 
enough time. In the 42 minutes it takes our small room to fall through the tunnel from 
North Pole to South Pole, we notice relative motion between test particles teleased 
initially from rest at opposite sides of the room.

Now, we want the laws of motion to look simple in our floating room. Therefore we 
want to eliminate all relative accelerations produced by external causes. “Eliminate” 
means to reduce these accelerations below the limit of detection so that they do not 
interfere with more important accelerations we wish to study, such as those produced 
when two particles collide. We eliminate the problem by choosing a room that is 
sufficiently small. Smaller room? Smaller relative accelerations of objects at different 
points in the room!

Let someone have instruments for detection of relative accelerations with any given 
degree of sensitivity. No matter how fine that sensitivity, the room can always be made 
so small that these perturbing relative accelerations ate too small to be detectable. 
Within these limits of sensitivity our room is a free-float frame. “Official” names for 
such a frame are the inertia l reference fram e and the Lorentz reference fram e. 
Here, however, we often use the name free-float fram e, which we find more 
descriptive. These are all names for the same thing.

A reference frame is said to be an “inertial” or “free-float” or “Lorentz” 
reference frame in a certain region of space and time when, throughout that 
region of spacetime — and within some specified accuracy — every free test 
particle initially at rest with respect to that frame remains at rest, and every 
free test particle initially in motion with respect to that frame continues its 
motion without change in speed or in direction.

Wonder of wonders! This test can be carried out entirely within the free-float frame. 
The observer need not look out of the room or refer to any measurements made 
external to the room. A free-float frame is “local” in the sense that it is limited in space 
and time —  and also ‘ ‘ local ’ ’ in the sense that its free-float character can be determined 
from within, locally.

Sir Isaac Newton stated his First Law of Motion this way: “Every body perseveres in 
its state of rest, or of uniform motion in a right [straight} line, unless it is compelled to 
change that state by forces impressed upon it.” For Newron, inertia  was a property of 
objects that described their tendency to maintain their state of motion, whether of rest 
or constant velocity. For him, objects obeyed the “Law of Inertia.” Here we have 
turned the “Law of Inertia” around: Before we certify a reference frame to be inertial, 
we require observers in that frame to demonstrate that every free particle maintains its 
initial state of motion or rest. Then Newton’s First Law of Motion defines a reference 
frame— an arena or playing field —  in which one can study the motion of objects and 
draft the laws of their motion.

Free-float frame is local

Free-float (inertial) frame 
formally defined

W h e n  is  th e  room, th e  sp a cesh ip , o r a n y  o th e r  veh ic le  s m a ll  eno u g h  to  be c a lle d  a  lo ca l 
fr e e - f lo a t  f r a m e ?  O r w h e n  is  th e  re la tiv e  acce lera tio n  o f  tw o  fr e e  p a r t ic le s  p la c e d  a t  

opposite en d s  o f  th e  veh ic le  too s l ig h t  to  he d e tec ted ?

“Local” is a tricky word. For example, drop the old-fashioned 20-meter-long 
railway coach in a horizontal orientation from rest at a height of 315 meters onto the 
surface of Earth (Figure 2-5, center). Time from release to impact equals 8 seconds, 
or 2400 million meters of light-travel time. At the same instant you drop the coach, 
release tiny ball bearings from rest —  and in midair —  at opposite ends of the coach.



THE TIDE-DRIVING POWER 
OF MOON AND SUN

N o t e ; N e ith e r a stro n o m e rs  n o r  n e w s p a p e rs  sa y  “ the V e n u s”  o r  “ the M a r s ."  All 
sa y  sim ply “ V e n u s"  o r  “ M a r s ."  Astronomers fo llow  the sa m e  s n a p p y  p ra c tice  
fo r  Earth , Moon, a n d  Sun. More a n d  m o re  o f  the re st  o f  the w o rld  n o w  fo llow s —  
os do w e  in this b o o k  —  the reco m m e n d a tio n s  o f  the In tern a tio n a l A stro n o m ica l 
U nion .

The ocean’s rise and fall in a never-ending rhythmic cycle bears witness to 
the tide-driving power of Moon and Sun. In principle those influences are no 
different from those that cause relative motion of free particles in the vicinity 
of Earth. In a free-float frame near Earth, particles separated vertically in­
c re a s e  their separation with time; particles separated horizontally decrease 
their separation with time (Figure 2-5). More generally, a thin spattering of 
free-float test masses, spherical in pattern, gradually becomes egg-shaped, 
with the long axis vertical. Test masses nearer Earth, more strongly attracted 
than the average, move downward to form the lower bulge. Similarly, test 
masses farther from Earth, less strongly attracted than the average, lag be­
hind to form the upper bulge.

By like action Moon, acting on the waters of Earth —  floating free in space 
—  would draw them out into an egg-shaped pattern if there were water 
everywhere, water of uniform depth. There isn’t. The narrow Straits of G i­
braltar almost cut off the Mediterranean from the open ocean, and almost kill 
all tides in it. Therefore it is no wonder that Galileo Galilei, although a great 
pioneer in the study of gravity, did not take the tides as seriously as the more 
widely traveled Johannes Kepler, an expert on the motion of Moon and the 
planets. Of Kepler, Galileo even said, “More than other people he was a 
person of independent genius . . . [but he] later pricked up his ears and 
became interested in the action of the moon on the water, and in other occult 
phenomena, and similar childishness.’’

Foolishness indeed, it must have seemed, to assign to the tiny tides of the 
Mediterranean an explanation so cosmic as Moon. But mariners in northern 
waters face destruction unless they track the tides. For good reason they 
remember that Moon reaches its summit overhead an average 50.47 minutes 
later each day. Their own bitter experience tells them that, of the two high 
tides a day —  tw o  because there are two projections on an egg —  each also 
comes about 50 minutes later than it did the day before.

Geography makes Mediterranean tides minuscule. Geography also 
makes tides in the Gulf of Maine and Bay of Fundy the highest in the world. 
How come? Resonance! The Bay of Fundy and the Gulf of Maine make 
together a  g r e a t  bathtub in which water sloshes back and forth with a natural 
period of 13 hours, near to the 12.4-hour timing of Moon’s tide-driving 
power —  and to the 12-hour timing of Sun’s influence. Build a big power- 
producing dam in the upper reaches of the Bay of Fundy? Shorten the length 
of the bathtub? Decrease the slosh time from 13 hours to exact resonance 
with Moon? Then get one-foot higher tides along the Maine coast!

Want to see the highest tides in the Bay of Fundy? Then choose your visit 
according to these rules: (1) Come in summer, when this northern body of 
water tilts most strongly toward Moon. (2) Come when Moon, in its elliptic 
orbit, is closest to Earth —  roughly 10 percent closer than its most distant 
point, yielding roughly 35 percent greater tide-producing power. (3) Take 
into account the tide-producing power of Sun, aksout 45 percent as great as 
that of Moon. Sun’s effect reinforces Moon’s influence when Moon is dark, 
dark because interposed, or almost interposed, between Earth and Sun, so 
Sun and Moon pull from the same side. But an egg has two projections, so Sun 
and Moon also assist each other in producing tides when they are on oppo­
site sides of Earth; in this case we see a  full Moon.



The result? Burncoat Head in the Minas Basin, Nova Scotia, has the great­
est mean range of 14.5 meters (47.5 feet) between low and high tide when 
Sun and Moon line up. At nearby Leaf Basin, a unique value of 16.6 meters 
(54.5 feet) was recorded in 1953.

High and low tides witness to the relative accelerations of portions of the 
ocean separated by the diameter of Earth. High tides show the “ stretching” 
relative acceleration at different radial distances from Moon or Sun. Low 
tides witness to the “ squeezing” relative accelerations at the same radial 
distance from Moon or Sun but at opposite sides of Earth.
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During the time of fall, they move toward each other a distance of 1 millimeter— a 
thousandth of a meter, the thickness of 16 pages of this book. Why do they move 
toward one another? Not because of the gravitational attraction between the ball 
bearings; this is far too minute to bring about any “coming together.” Rather, 
according to Newton’s nonlocal view, they are both attracted toward the centet of 
Earth. Their relative motion results from the difference in direction of Earth’s 
gravitational pull on them, says Newton.

As another example, drop the same antique railway coach from rest in a vertical 
orientation, with the lower end of the coach initially 315 meters from the surface of 
Earth (Figure 2-5, right). Again release tiny ball bearings from rest at opposite ends 
of the coach. In this case, during the time of fall, the ball bearings move apart by a 
distance of 2 millimetets because of the greater gravitational acceleration of the one 
neater Earth, as Newton would put it. This is twice the change that occurs for 
horizontal separation.

In either of these examples let the measuring equipment in use in the coach be just 
shott of the sensitivity required ro derect this relative motion of the ball bearings. 
Then, with a limited time of observation of 8 seconds, the railway coach— or, to use 
the earlier example, the freely falling room— serves as a free-float frame.

When the sensitivity of measuring equipment is increased, the railway coach may 
no longer serve as a local free-floar frame unless we make additional changes. Eithet 
shorten the 20-meter domain in which observations are made, or decrease the time 
given to the observations. Or better, cut down some appropriate combination of 
space and time dimensions of the region under observation. Or as a final alrernative, 
shoot the whole apparatus by rocket up to a region of space where one cannor detect 
locally the “differential gravitational acceleration” between one side of the coach and 
another— ro use Newton’s way of speaking. In another way of speaking, relative 
accelerations of particles in different parts of the coach must be too small to perceive. 
Only when these relative accelerations are too small to detect do we have a reference 
frame wirh respect to which laws of motion are simple. Thar’s why “local” is a tricky 
word!

Hold on! You just finished saying that the idea of local gravity is unnecessary. Yet here 
you use the “differential gravitational acceleration" to account for relative accelera­
tions of test particles and ocean tides near Earth. Is local gravity necessary or not?

Near Earth, two explanations of projectile paths or ocean flow give essentially the 
same numerical resulrs. Newron says there is a force of gravity, to be treated like any 
other force in analyzing motion. Einstein says gravity differs from all orher forces; 
Get rid of gravity locally by climbing into a free-float frame. Near the surface of 
Earth both explanations accurately predict relative accelerations of falling particles 
toward or away from one another and motions of the tides. In this chapter we use the 
more familiar Newtonian analysis to predict relative accelerations.

When tests of gravity are very sensitive, or when gravitational effects are large, 
such as near whire dwarfs or neutron stars, then Einstein’s predictions are not the 
same as Newton’s. In such cases Einstein’s battle-tested 1915 theory of gravity 
(genetal relativity) ptedicts results that are observed; Newton’s theory makes incor­
rect predictions. This justifies Einstein’s insistence on getting rid of gravity locally 
using free-float frames. All rhat remains of gravity is the relative accelerations of 
nearby particles — tidal accelerations.

2.4 REGIONS OF SPACETIME
special relativity is limited to free-float frames

“Region of spacetime.” What is the precise meaning of this term? The long narrow 
railway coach in Figure 2-5 probes spacetime for a limited stretch of time and in one or 
another single direction in space. It can be oriented north-south or east-west or
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up-dow n. Whatever its orientation, relative acceleration of the tiny ball bearings 
released at the two ends can be measured. For all three directions —  and for all 
intermediate directions —  let it be found by calculation that the telative drift of two 
test particles equals half the minimum detectable amount or less. Then throughout a 
cube of space 20 meters on an edge and for a lapse of time of 8 seconds (2400 million 
meters of light-travel time), test particles moving every which way depart from 
straighr-line motion by undetectable amounts. In other words, the reference frame is 
free-float in a local region of spacetime with dimensions

(20 meters X 20 meters X 20 meters of space) X 2400 million meters of time

Notice that this “tegion of spacetime” is four-dimensional: three dimensions of space 
and one of time.

“ Region of spacetime” is 
four-dimensional

W h y  p a y  so m u c h  a t te n t io n  to th e  s m a ll  r e la tiv e  a cce lera tio n s  d escr ib ed  a b o ve?  W h y  no t 

fr o m  th e  b e g in n in g  c o n s id er a s  reference fr a m e s  on ly  sp a cesh ip s very  f a r  fr o m  E a r th , f a r  

fr o m  o u r  S u n , a n d  f a r  fr o m  a n y  o th er g r a v i ta t i n g  bo d y?  A t  these d is ta n c e s  w e  n eed  n o t 

w o rry  a t  a l l  a b o u t a n y  re la tiv e  acce lera tio n  d u e  to  a  n o n u n ifo rm  g r a v i ta t io n a l  f ie ld ,  

a n d  a  f r e e - f lo a t  f r a m e  ca n  he h u g e  w i th o u t  w o rry in g  a b o u t re la tiv e  a cce lera tio n s  o f  

p a r t ic le s  a t  th e  e x tr e m it ie s  o f  th e  f r a m e . W h y  n o t s tu d y  sp e c ia l  r e la t i v i t y  i n  these rem ote  

reg ions o f  space?

Most of our experiments are carried out near Earth and almost all in our part of the 
solar system. Near Earth or Sun we cannot eliminate relative accelerations of test 
particles due to nonuniformity of gravitational fields. So we need to know how large 
a region of spacetime our experiment can occupy and still follow the simple laws that 
apply in free-float frames.

For some experiments local free-float frames are not adequate. For example, a 
comet sweeps in from remote distances, swings close to Sun, and returns to deep space. 
(Consider only the head of the comet, not its 100-million-kilometer-long tail.) 
Particles traveling near the comet during all rhose years move closer together or farther 
apart due to tidal forces from Sun (assuming we can neglect effects of the gravitational 
field of the comet itself). These relative forces are called tidal, because similat 
differential forces from Sun and Moon act on the ocean on opposite sides of Earth to 
cause tides (Box 2 -1). A frame large enough to include these particles is not free-float. 
So reduce spatial size until relative motion of encompassed particles is undetectable 
duting that time. The resulting frame is very much smaller than the head of the comet! 
You cannot analyze the motion of a comet in a frame smaller than the comet. So 
instead think of a larger free-float frame that surrounds the comet for a limited time 
during its orbit, so that the comet passes thtough a series of such frames. Or think of a 
whole collection of free-float frames plunging radially toward Sun, through which the 
comet passes in sequence. In either case, motion of the comet over a small portion of its 
trajectory can be analyzed rigorously with respect to one of these local free-float frames 
using special relativity. However, questions about the entire rrajectory cannot be 
answered using only one free-float frame; for this we require a series of frames. General 
relativity —  the theory of gravitation —  tells how to describe and predict orbits that 
traverse a string of adjacent free-float frames. Only general relativity can describe 
motion in unlimited regions of spacetime.

When is general relativity 
required?

P lease stop  h e a t in g  a r o u n d  th e  h u s h !  In  d e f in in g  a  fr e e - f lo a t  f r a m e ,  y o u  s a y  t h a t  every  

te s t  p a r t ic le  a t  rest in  such  a  f r a m e  re m a in s  a t  rest “w i th in  som e sp e c ifie d  a c c u r a c y .” 

W h a t  a ccu ra cy?  C a n 't  y o u  he m ore sp ec ific?  W h y  do  these d e fin it io n s  d e p e n d  on 

w h e th e r  or n o t w e  a re  a b le  to  perce ive  th e  t i n y  m o tio n  o f  som e te s t  p a r t ic le ?  M y  eyesig h t 

g e ts  worse. O r I  ta k e  m y  g la sses off. D oes th e  w o r ld  su d d e n ly  change , a lo n g  w i th  the  

s ta n d a r d s  f o r  “in e r t ia l  f r a m e ”?  S u re ly  sc ience i s  more e x a c t, more o b jec tive  th a n  t h a t !
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Science can be “exact” only when we agree on acceptable accuracy. A 1000-ton 
rocket streaks 1 kilometer in 3 seconds; do you want to measure the sequence of its 
positions during that time with an accuracy of 10 centimeters? An astronaut in an 
orbiting space station releases a pencil that floats at rest in front of her; do you want to 
track its position to 1-millimeter accuracy for 2 hours? Each case places different 
demands on the inertial frame from which the observations are made. Specific 
figures imply specific requirements for inertial frames, requirements that must be 
verified by test particles. The astronaut takes off her glasses; then she can determine 
the position of the pencil with only 3-millimeter accuracy. Suddenly— yes! —  
requirements on the inertial frame have become less stringent— unless she is willing 
to observe the pencil over a longer period of time.

2.5 TEST PARTICLE

Test particle defined

Free-float frame definable 
because every substance falls 

with same acceleration

ideal tool to probe spacetime without affecting it
“Test particle.” How small must a particle be to qualify as a test particle? It must 
have so little mass that, within some specified accuracy, its presence does not affect the 
motion of other nearby particles. In terms of Newtonian mechanics, gravitational 
attraction of the test particle for other particles must be negligible within the accuracy 
specified.

As an example, consider a particle of mass 10 kilograms. A second and less massive 
particle placed 10 centimeters from it and initially at rest will, in less than 3 minutes, 
be drawn toward it by 1 millimeter (see the exercises for this chapter). For measure­
ments of this sensitivity or greater sensitivity, the 10-kilogram object is not a test 
particle. A particle counts as a test particle only when it accelerates as a result of 
gravitational forces without itself causing measurable gravitational acceleration in 
other objects— according to the Newtonian way of speaking.

It would be impossible to define a free-float frame were it not for a remarkable 
feamre of nature. Test particles of different size, shape, and material in the same 
location all fall with the same acceleration toward Earth. If this were not so, an observer 
inside a falling room would notice that an aluminum object and a gold object 
accelerate relative to one another, even when placed side by side. At least one of these 
test particles, initially at rest, would not remain at rest within the falling room. That is, 
the room would not be a free-float frame according to definition.

How sure are we that particles in the same location but of different substances all 
fall toward Earth with equal acceleration? John Philoponus of Alexandria argued, in 
517 A .D ., that when two bodies “differing greatly in weight” are released simulta­
neously to fall, “the difference in their time [of fall] is a very small one.” According to 
legend Galileo dropped balls made of different materials from the Leaning Tower of 
Pisa in order to verify this assumption. In 1905 Baron Roland von Eotvos checked that 
the gravitational acceleration of wood toward Earth is equal to that of platinum within 
1 part in 100 million. In the 1960s R. H. Dicke, Peter G. Roll, and Robert V. 
Krotkov reduced this upper limit on difference in accelerations— for aluminum and 
gold responding to the gravitational field of Sun — to less than 1 part in 100,000 
million (less than 1 in 10“ )- This —  and a subsequent experiment by Vladimir 
Braginsky and colleagues —  is one of the most sensitive checks of fundamental 
physical principles in all of science: the equality of acceleration produced by gravity on 
test particles of every kind.

It follows that a particle made of any material can be used as a test particle to 
determine whether a given reference frame is free-float. A frame that is free-float for a 
tesr particle of one kind is free-float for test particles of all kinds.
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2.6 LOCATING EVENTS WITH A 
LATTICEWORK OF CLOCKS

only the nearest clock records an event
The fundamental concept in physics is event. An event is specified not only by a place 
but also by a time of happening. Some examples of events are emission of a particle or a 
flash of light (from, say, an explosion), reflection or absorption of a particle or light 
flash, a collision.

How can we determine the place and time at which an event occurs in a given 
free-float frame? Think of constructing a frame by assembling meter sticks into a 
cubical latticework similar to the jungle gym seen on playgrounds (Figure 2-6). At 
every intersection of this latticework fix a clock. These clocks are identical. They can be 
constructed in any manner, but their readings are in meters of light-travel time 
(Section 1.4).

How are the clocks to be set? We want them all to read the “same time” as one 
another for observers in this frame. When one clock reads midnight (00.00 hours =  0 
meters), all clocks in the same frame should read midnight (zero). That is, we want the 
clocks to be synchronized in this frame.

How are the several clocks in the lattice to be synchronized? As follows: Pick one 
clock in the lattice as the standard and call it the reference clock. Start this reference

Latticework of rods and clocks

Synchronizing clocks in lattice

FIGURE 2-6. L a t t ic e w o r k  o f  m e te r  s t ic k s  a n d  clocks.
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Reference event defined
clock with its pointer set initially at zero time. At this instant let it send out a flash of 
light that spreads out as a spherical wave in all directions. Call the flash emission the 
reference event and the spreading spherical wave the reference flash.

When the reference flash gets to a slave clock 5 meters away, we want that clock to 
read 5 meters of light-travel time. Why? Because it takes light 5 meters of light-travel 
time to travel the 5 meters of distance from reference clock to slave clock. So an 
assistant sets the slave clock to 5 meters of time long before the experiment begins, 
holds it at 5 meters, and releases it only when the reference flash arrives. (The assistant 
has zero reaction time or the slave clock is set ahead an additional time equal to the 
reaction time.) When assistants at all slave clocks in the lattice follow this prearranged 
procedure (each setting his slave clock to a time in meters equal to his own distance 
from the reference clock and starting it when the reference light flash arrives), the 
lattice clocks are said to be synchronized.

This is an awkward way to synchronize lattice docks with one another. Is there some 
simpler and more conventional way to carry out this synchronization?

There are other possible ways to synchronize clocks. For example, an extra portable 
clock could be set to the reference clock at the origin and carried around the lattice in 
order to set the rest of the clocks. However, this procedure involves a moving clock. 
We saw in Chapter 1 that the time between two events is not necessarily the same as 
recorded by clocks in relative motion. The portable clock will not even agree with the 
reference clock when it is brought back next to it! (This idea is explored more fully in 
Section 4.6.) However, when we use a moving clock traveling at a speed that is a very 
small fraction of light speed, its reading is only slightly different from that of clocks 
fixed in the lattice. In this case the second method of synchronization gives a result 
nearly equal to the first— and standard —  method. Moreover, the error can be made 
as small as desired by carrying the portable clock around sufficiently slowly.

Locate event with latticework
Use the latticework of synchronized clocks to determine location and time at which 

any given event occurs. The space position of the event is taken to be the location of the 
clock nearest the event. The location of this clock is measured along three lattice 
directions from the reference clock: northward, easrward, and upward. The time of the 
event is taken to be the time recorded on the same lattice clock nearest the event. The 
spacetime location of an event then consists of four numbers, three numbers that 
specify the space position of the clock nearest the event and one number that specifies 
the time the event occurs as recorded by that clock.

The clocks, when installed by a foresighted experimenter, will be recording clocks. 
Each clock is able to detect the occurrence of an event (collision, passage of light-flash 
or particle). Each reads into its memory the nature of the event, the time of the event, 
and the location of the clock. The memory of all clocks can rhen be read and analyzed, 
perhaps by automatic equipment.

Why a latticework built of rods that are 1 meter long? What is special about 1 meter? 
Why not a lattice separation of 100 meters between recording clocks? Or 1 millimeter?

When a clock in the 1-meter lattice records an event, we will not know whether the 
event so recorded is 0.4 meters to the left of the clock, for instance, or 0.2 meters to 
the right. The location of the event will be uncertain to some substantial fraction of a 
meter. The time of the event will also be uncertain with some appreciable fraaion of 
a meter of light-travel time, because it may take that long for a light signal from the 
event to reach the nearest clock. However, this accuracy of a meter or less is quite
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adequate for observing the passage of a rocket. It is extravagantly good for measure- 
menrs on planetary orbits— for a planer it would even be reasonable to increase the 
lattice spacing from 1 meter ro hundreds of meters.

Neither 100 meters nor 1 meter is a lattice spacing suitable for studying the tracks 
of particles in a high-energy accelerator. There a centimeter or a millimeter would be 
more appropriate. The location and time of an event can be determined to whatever 
accuracy is desired by constructing a latticework with sufficiently small spacing.

2.7 OBSERVER
ten thousand local witnesses

In relativity we often speak about the observer. Where is this observer? At one place, 
or all over the place? Answer: T he w ord  “observer” is a sho rthand  way o f 
speaking abou t the w hole collection o f record ing  clocks associated w ith 
one free-float fram e. No one real observer could easily do what we ask of the “ideal 
observer” in our analysis of relativity. So it is best to think of the observer as a person 
who goes around reading out the memories of all recording clocks under his control. 
This is the sophisticated sense in which we hereafter use the phrase “the observer 
measures such-and-such.”

Location and time of each event is recorded by the clock nearest that event. We 
intentionally limit the observer’s report on events to a summary of data collected from 
clocks. We do not permit the observer to report on widely separated events that he 
himself views by eye. The reason: travel time of light! It can take a long time for light 
from a distant event to reach the observer’s eye. Even the order in which events are seen 
by eye may be wrong: Light from an event that occurred a million years ago and a 
million light-years distant in our frame is just entering our eyes now, after light from an 
event that occurred on Moon a few seconds ago. We see these two events in the “wrong 
order” compared with observations recorded by our far-flung latticework of recording 
clocks. For this reason, we limit the observer to collecting and reporting data from the 
recording clocks.

The wise observer pays attention only to clock records. Even so, light speed still 
places limits on how soon he can analyze events after they occur. Suppose that events in 
a given experiment are widely separated from one another in interstellar space, where a 
single free-float frame can cover a large region of spacetime. Let remote events be 
recorded instantly on local clocks and transmitted by radio to the observer’s central 
control room. This information transfer cannot take place faster than the speed of 
light —  the same speed at which radio waves travel. Information on dispersed events is 
available for analysis at a central location only after light-speed transmission. This 
information will be full and accurate and in no need of correction —  but it will be late. 
Thus all analysis of events must take place after— sometimes long after! — events are 
over as recorded in that frame. The same difficulty occurs, in principle, for a free-float 
frame of any size.

Nature puts an unbreakable speed limit on signals. This limit has profound 
consequences for decision making and control. A space probe descends onto Triton, a 
moon of the planet Neptune. The probe adjusts its rocket thrust to provide a 
slow-speed “soft” landing. This probe must carry equipment to detect its distance 
from Triton’s surface and use this information to regulate rocket thrust on the spot, 
without help from Earth. Earth is never less than 242 light-minutes away from 
Neptune, a round-trip radio-signal time of 484 minutes— more than eight hours. 
Therefore the probe would crash long before probe-to-surface distance data could be 
sent to Earth and commands for rocket thrust returned. This time delay of information 
transmission does not prevent a detailed retrospective analysis on Earth of the probe’s 
descent onto Triton —  but this analysis cannot take place until at least 242 minutes

O bserver defined

O bserver limited to clock readings

Speed limit: c 
It's the law!
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S A M P L E  P R O B L E M  2-1
METEOR ALERT!
Interstellar Command Center receives word by 
radio that a meteor has just whizzed past an out­
post situated 100 light-seconds distant (a fifth of 
Earth-Sun distance). The report warns that the 
meteor is headed directly toward Command

SOLUTION
The warning radio signal and the meteor leave the 
outpost at the same time. The radio signal moves 
wirh light speed from outpost to Command 
Center, covering the 100 light-seconds of distance 
in 100 seconds of time. During this 100 seconds 
the meteor also travels roward Command Center. 
The meteor moves at one quarter light speed, so in 
100 seconds it covers one quarter of 100 light-se­
conds, or 2 5 light-seconds of distance. Therefore, 
when the warning arrives at Command Center, the 
meteor is 100 — 25 =  75 light-seconds away.

Center at one quarter light speed. Assume radio 
signals travel with light speed. How long do Com­
mand Center personnel have to take evasive ac­
tion?

The meteor takes an additional 100 seconds of 
time to move each additional 2 5 light-seconds of 
distance. So it covers the remaining 75 light-se­
conds of distance in an additional time of 300 
seconds.

In brief, after receiving the radio warning. 
Command Center personnel have a relaxed 300 
seconds —  or five minutes —  to stroll ro their me­
teor-proof shelter.

after the event. Could we gather last-minute information, make a decision, and send 
back control instructions? No. Nature rules our micromanagement of the far-away 
(Sample Problem 2-1).

Speed in meters per meter

2.8 MEASURING PARTICLE SPEED
reference frame clocks and rods put to use

The recording clocks reveal particle motion through the lattice; Each clock that the 
particle passes records the time of passage as well as the space location of this event. 
How can the path of the particle be described in terms of numbers? By recording 
locations of these events along the path. Distances between locations of successive 
events and time lapse between them reveal rhe particle speed —  speed being space 
separation divided by time taken to traverse this separation.

The conventional unit of speed is meters per second. However, when time is 
measured in meters of light-travel time, speed is expressed in meters of distance 
covered per meter of time. A flash of light moves one meter of distance in one meter of 
light-travel time: its speed has the value unity in units of meters per meter. In contrast, 
a particle loping along at half light speed moves one half meter of distance per meter of 
time; its speed equals one half in units of meter per meter. More generally, particle 
speed in meters per meter is the ratio of its speed to light speed:

(particle speed)
_  (meters of distance covered by particle) 

(meters of time required to cover that distance) 

_  (particle speed in meters/second)
(speed of light in meters/second)



In this book we use the letter p to symbolize the speed of a particle in meters of distance 
per meter of time, or simply meters per meter. Some authors use the lowercase Greek 
letter beta; Let stand for velocity in conventional units (such as meters per 
second) and c stand for light speed in the same conventional units. Then
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(2- 1)

From the motion of test particles through a latticework of clocks —  or rather from 
records of coincidences of these particles with clocks —  we determine whether the 
latticework constitutes a free-float frame. IF records show (a) that— within some 
specified accuracy —  a test particle moves consecutively past clocks that lie in a straight 
line, (b) that test-particle speed calculated from the same records is constant— again, 
within some specified accuracy — and, (c) that the same results are true for as many 
test-particle paths as the most industrious observer cares to trace throughout the given 
region of space and time, THEN the lattice constitutes a free-float (inertial) frame 
throughout that region of spacetime.

Test for free-float frame

P a r tic le  speed  a s  a  f r a c t io n  o f  l ig h t  speed  is  c e r ta in ly  a n  u n c o n v e n tio n a l u n i t  o f  

m easure. W h a t  a d v a n ta g e s  does i t  h a v e  t h a t  j u s t i f y  th e  w o rk  n eed ed  to  become f a m i l i a r  

w i t h  i t ?

The big advantage is that it is a measure of speed independent of units of space and 
time. Suppose that a particle moves with respect to Earth at half light speed. Then it 
travels— with respect to Earth— one half meter of distance in one meter of light 
travel time. It travels one half light-year of distance in a period of one year. It travels 
one half light-second of distance in a time of one second, one half light-minute in one 
minute. Units do not matter as long as we use the same units to measure distance and 
time; the result always equals the same number: 1 /2 . Another way to say this is that 
speed is a fraction; same units on top and bottom of the fraction cancel one another. 
Fundamentally, v is unit-free. O f course, if we wish we can speak of “meters per 
meter."

2.9 ROCKET FRAME
does it move? or is it the one at rest?

Let two reference frames be two different latticeworks of meter sticks and clocks, one 
moving uniformly relative to the other, and in such a way that one row of clocks in each 
frame coincides along the direction of relative motion of the two frames (Figure 2-7). 
Call one of these frames laboratory  fram e and the other— moving to the right 
relative to the laboratory frame —  rocket fram e. The rocket is unpowered and coasts 
along with constant velocity relative to the laboratory. Let rocket and laboratory 
latticeworks be overlapping in the sense that a region of spacetime exists common to 
both frames. Test particles move through this common region of spacetime. From 
motion of these test particles as recorded by his own clocks, the laboratory observer 
verifies that his frame is free-float (inertial). From motion of the same test particles as 
recorded by her own clocks, the rocket observer verifies that her frame is also free-float 
(inertial).

Now we can describe the motion of any particle with respect to the laboratory 
frame. The same particles and —  if they collide —  the same collisions may be mea­
sured and described with respect to the free-float rocket frame as well. These particles, 
their paths through spacetime, and events of their collisions have an existence inde-

Rocket frame defined
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FIGURE 2-7. L a b o r a to r y  a n d  ro cke t f r a m e s .  A  second ago the tw o latticew orks were intermeshed.

DifFerent frames lead to 
different descriptions

pendent of any free-float frames in which they are observed, recorded, and described. 
However, descriptions of these common paths and events are typically different for 
different free-float frames. For example, laboratory and rocket observers may not 
agree on the direction of motion of a given test particle (Figure 2-8). Every track that is 
straight as plotted with respect to one reference frame is straight also with respect to the 
other frame, because both are free-float frames. This straightness in both frames is 
possible only because one free-float frame has uniform velocity relative to any other

LABORATORY
FRAME

ROCKET
(UNPOW ERED)

FRAME
FIGURE 2-8. A  se r ie s  o f  “s n a p s h o ts "  o f  a  t y p ic a l  te s t  p a r t i c l e  a s  m e a s u r e d  f r o m  la b o r a to r y  a n d  
ro cke t f r e e - f lo a t  f r a m e s ,  r e p r e s e n te d  b y  c u ta w a y  c y lin d e r s . S ta r t a t  the bottom a n d  read upw ard  
(tim e progresses from  bottom to top).



2.10 SUMMARY 4 3

overlapping free-float frame. However, the direction of this path differs from labora­
tory to rocket frame, except in the special case in which the particle moves along the 
line of relative motion of two frames.

How many different free-float rocket frames can there be in a given region of 
spacetime? An unlimited number! Any unpowered rocket moving through that region 
in any direction is an acceptable free-float frame from which to make observations. 
More: There is nothing unique about any of these frames as long as each of them is 
free-float. All “rocket” frames are unpowered, all are equivalent for carrying out 
experiments. Even the so-called “laboratory frame” is not unique; you can rename ir 
“Rocket Frame Six” and no one will ever know the difference! All free-float (inertial) 
frames are equivalenr arenas in which to carry out physics experiment. That is the 
logical basis for special relativiry, as described more fully in Chapter 3.

Many possible free-float frames

No unique free-float frame

A  rocket ca rr ie s  a  firec ra cker . T h e  fir e c ra c k e r  explodes. D oes th i s  e v e n t— th e  exp losion  
—  ta k e  p la ce  in  th e  rocket f r a m e  or in  th e  la b o ra to ry  fr a m e ?  W h ic h  is  th e  “h o m e "  f r a m e  

f o r  th e  e v e n t?  A  second  firec ra cker , o r ig in a lly  a t  rest in  th e  la b o ra to ry  f r a m e ,  explodes. 

D o es th i s  second  ev e n t occur in  th e  la b o ra to ry  f r a m e  or in  th e  rocket f r a m e ?

Events are primary, the essential stuff of Nature. Reference frames are secondary, 
devised by humans for locating and comparing events. A given event occurs in both 
ftames— and in all possible frames moving in all possible directions and with all 
possible constant relative speeds through the region of spacetime in which the event 
occurs. The apparatus that “causes” the event may be at rest in one free-float frame; 
another apparatus that “causes” a second event may be at rest in a second free-float 
frame in motion relative to the first. No matter. Each event has its own unique 
existence. Neither is “owned” by any frame at all.

A spark jumps 1 millimeter from the antenna of Mary’s passing spaceship to a pen 
in the pocket of John who lounges in the laboratory doorway (Section 1.2). The 
“apparatus” that makes the spark has parts riding in different reference frames —  
pen in laboratory frame, antenna in rocket frame. The spark jump —  in which frame 
does this event occur? It is not the property of Mary, not the property of John —  not 
the property of any other observer in the vicinity, no matter what his or her state of 
motion. The spark-jump event provides data for every observer.

Drive a steel surveying stake into the ground to mark the corner of a plot of land. 
Is this a “Daytime stake” or a “Nighttime stake”? Neither! It is just a marking 
a location in space, the arena of surveying. Similarly an event is neither a “laboratory 
event” nor a “rocket event.” It is just an even t, marking a location in sp a c e tim e , the 
arena of science.

Laboratory frame or rocket frame: Which one is the “primary” free-float frame, the 
one “really” at rest? There is no way to tell! We apply the names “laboratory” and 
“rocker” to two free-float enclosures in interstellar space. Someone switches the 
nameplates while we sleep. When we wake up, there is no way to decide which is 
which. This realization leads to Einstein’s Principle of Relariviry and proof of the 
invariance of the interval, as described in Chapter 3.

2.10 SUMMARY
what a free-float frame is and what it's good for

The free-float fram e (also called the inertial fram e and the Lorentz fram e)
provides a setting in which to carry out experiments without the presence of so-called 
‘ ‘gravitational forces. ’ ’ In such a frame, a particle released from rest remains at rest and



a particle in motion continues that motion without change in speed or in direction 
(Section 2.2), as Newton declared in his First Law of Motion.

Where does that frame of reference sit? Where do the east-west, north-south, 
up-down lines run? We might as well ask where on the flat landscape in the state of 
Iowa we see the lines that mark the boundaries of the townships. A concrete marker, to 
be sure, may show itself as a corner marker at a place where a north-south line meets an 
east-west line. Apart from such on-the-spot evidence, those lines are largely invisible. 
Nevertheless, they serve their purpose: They define boundaries, settle lawsuits, and fix 
taxes. Likewise imaginary for the most part are the clock and rod paraphernalia of the 
idealized inertial reference frame. Work of the imagination though they are, they 
provide rhe conceptual framework for everything that goes on in the world of particles 
and radiation, of masses and motions, of annihilations and creations, of fissions and 
fusions in every context where tidal effects of gravity are negligible.

Our ability to define a free-float frame depends on the fact that a test partic le  
made of any material whatsoever experiences the same acceleration in a given gravita­
tional field (Section 2.5).

Near a massive (“gravitating”) body, we can still define a free-float frame. How­
ever, in such a frame, free test particles typically accelerate toward or away from one 
another because of the nonuniform field of the gravitating body (Section 2.3). This 
limits —  in both space and time —  the size of a free-float frame, the domain in which 
the laws of motion are simple. The frame will continue to qualify as free-float and 
special relativity will continue to apply, provided we reduce the spatial extent, or the 
time duration of our experiment, or both, until these relative, or tidal, motions of test 
particles cannot be detected in our circumscribed region of spacetime. This is what 
makes special relativity "special” or limited (French: relativite restreinte: “restricted 
relativity”). General relativity (the theory of gravitation) removes this limitation 
(Chapter 9).

So there are three central characteristics of a free-float frame. (1) We can “get rid of 
gravity” by climbing onto (getting into) a free-float frame. (2) The existence of a 
free-float frame depends on the equal acceleration of all particles at a given location in 
a gravitational field —  in Newton’s way of speaking. (3) Every free-float frame is of 
limited extent in spacetime. All three characteristics appear in a fuller version of the 
quotation by Albert Einstein that began this chapter:

At that moment there came to me the happiest thought of my life . . . for an observer 
falling freely from the roof of a house no gravitational field exists during his fa ll  —  at least 
not in his immediate vicinity. That is, if the observer releases any objects, they remain in a 
state of rest or uniform motion relative to him, respectively, independent of their unique 
chemical and physical nature. Therefore the observer is entitled to interpret his state as 
that of “rest.” -uer"
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CHAPTER 2 EXERCISES

PRACTICE
2-1 hum« ■ball
A person rides in an elevator that is shot upward out 
of a cannon. Think of the elevator after it leaves the 
cannon and is moving freely in the gravitational field 
of Earth. Neglect air resistance.

a  While the elevator is still on the way up, the 
person inside jumps from the “floor” of the elevator. 
Will the person (1) fall back to the “floor” of the 
elevator? (2) hit the “ceiling” of the elevator? (3) do 
something else? If so, what?

b The person waits to jump until after the eleva­
tor has passed the top if its trajectory and is falling 
back toward Earth. Will your answers to part a be 
different in this case?

C How can the person riding in the elevator tell 
when the elevator reaches the top of its trajectory?

2-2 ffree-float bounce
Test your skill as an acrobar and contorrionist! Fasren 
a weight-measuring barhroom scale under your feet 
and bounce up and down on a trampoline while 
reading the scale. Describe readings on rhe scale at

different times during the bounces. During what part 
of each jump will the scale have zero reading? Ne­
glecting air resisrance, whar is the longest part of the 
cycle during which you mighr consider yourself to be 
in a free-float frame?

2-3 practical synchronization of 
clocks

You are an observer in the laboratory frame stationed 
near a clock wirh spatial coordinates x  =  6 light- 
seconds, y — 8 light-seconds, and z =  0 light-seconds. 
You wish to synchronize your clock with the one at 
the origin. Describe in detail and with numbers how 
to proceed.

2-4 synchronization by a 
traveling clock

Mr. Engelsberg does nor approve of our merhod of 
synchronizing clocks by light flashes (Section 2.6).

a  “I can synchronize my clocks in any way I 
choose!” he exclaims. Is he righr?

Mr. Engelsberg wishes to synchronize two identical 
clocks, named Big Ben and Little Ben, which are 
relatively at rest and separated by one million kilome­
ters, which is 10^ meters or approximately three times
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the distance between Earth and Moon. He uses a third 
clock, identical in construction with the first two, that 
travels with constant velocity between them. As his 
moving clock passes Big Ben, it is set to read the same 
time as Big Ben. When the moving clock passes Little 
Ben, that outpost clock is set to read the same time as 
the traveling clock.

b “Now Big Ben and Little Ben are synchro­
nized,” says Mr. Engelsberg. Is he right?

c How much out of synchronism are Big Ben and 
Little Ben as measured by a latticework of clocks — at 
rest relative to them both —  that has been synchro­
nized in the conventional manner using light flashes? 
Evaluate this lack of synchronism in milliseconds 
when the traveling clock that Mr. Engelsberg uses 
moves at 360,000 kilometers/hour, or 10’ meters/ 
second.

d Evaluate the lack of synchronism when the 
traveling clock moves 100 times as fast.

e Is there any earthly reason —  aside from mat­
ters of personal preference— why we all should not 
adopt the method of synchronization used by Mr. 
Engelsberg?

2-5 Earth's surface as a free- 
ffloat frame

Many experiments involving fast-moving particles 
and light itself are observed in earthbound laborato­
ries. Typically these laboratories are not in free fall! 
Nevertheless, under many circumstances laboratories 
fixed to the surface of Earth can satisfy the conditions 
required to be called free-float frames. An example;

a  In an earthbound laboratory, an elementary 
particle with speed v =  0.96 passes from side to side 
through a cubical spark chamber one meter wide. For 
what length of laboratory time is this particle in transit 
through the spark chamber? Therefore for how long a 
time is the experiment “in progress”? H ow  far will a 
separate test particle, released from rest, fall in this 
time? [Distance of fall from rest =  where
g =  acceleration of gravity ^ 1 0  meters/second^ and 

is the time of free fall in seconds.} Compare your 
answer with the diameter of an atomic nucleus (a few 
times 10“ ' ’ meter).

b How wide can the spark chamber be and still 
be considered a free-float frame for this experiment? 
Suppose that by using sensitive optical equipment (an 
in terferom eter) you can detect a test particle 
change of position as small as one wavelength of 
visible light, say 500 nanometers =  5 X 10~^ meter. 
How long will it take the test particle to fall this 
distance from rest? How far does the fast elementary 
particle of part a move in that time? Therefore how 
long can an earthbound spark chamber be anti still be 
considered free-float fot this sensitivity of deteaion?

EXERCISE 2-6 . Schematic d iagram  o f  tw o ba ll bearings fa l l in g  
onto E a rth ’s surface. N o t to scale.

2-6 horizontal extent of free- 
float frame near Earth

Consider two ball bearings near the surface of Earth 
and originally separated horizontally by 20 meters 
(Section 2.3). Demonstrate that when released from 
rest (relative to Earth) the particles move closer to­
gether by 1 millimeter as they fall 315 meters, using 
the following method of similar triangles or some 
other method.

Each particle falls from rest toward the center of 
Earth, as indicated by arrows in the figure. Solve the 
problem using the ratio of sides of similar triangles 
abc and a'h'c'. These triangles are upside down with 
respect to each other. However, they are similar be­
cause their respective sides are parallel: Sides ac and 
a'c' are parallel to each other, as are sides be and b'c' 
and sides ab and a'b '. We know the lengths of some 
of these sides. Side a'c' =  315 meters is the height of 
fall (greatly exaggetated in the diagtam); side ac is 
effectively equal to the radius of Earth, 6,371,000 
meters. Side ab =  (1/2) (20 meters) equals half the 
original separation of the particles. Side a'b' equals 
HALF their CHANGE in separation as they fall onto 
Earth’s surface. Use the ratio of sides of similar trian­
gles to find this “half-change” and therefore the en­
tire change in separation as two particles initially 20 
meters apart horizontally fall from rest 315 meters 
onto the surface of Earth.

2-7 limit on free-float frame 
near Earth's Moon

Release two ball bearings from rest a horizontal dis­
tance 20 meters apart near the surface of Earth’s 
Moon. By how much does the separation between 
them dectease as they fall 315 meters? How many 
seconds elapse during this 315-metet fall? Assume 
that an initial vertical separation of 20 meters is in­
creased by twice the change in horizontal separation in 
a fall through the same height. State clearly and com­
pletely the dimensions of the tegion of spacetime in 
which such a freely falling frame constitutes an inertial 
frame (to the given accuracy). Moon radius equals



EXERCISE 2-10 TEST PARTICLE? 4 7

1738 kilometers. Gravitational acceleration 
Moon’s surface: g =  1.62 meters/second^.

at

2-8 vertical extent of free-float 
frame near Earth

N ote: This exercise makes use of elementary calculus 
and the Newtonian theory of gravitation.

A paragraph in Section 2.3 says:

As another example, drop the same antique [20-meter- 
long] railway coach from rest in a vertical orientation, 
with the lower end of the coach initially 315 meters 
from the surface of Earth (Figure 2-5, right). Again 
release two tiny ball bearings from rest at opposite ends 
of the coach. In this case, during the time of fall [8 
seconds], the ball bearings move a p a rt by a distance of 
two millimeters because of the greater gravitational 
acceleration of the one nearer Earth, as Newton would 
put it. This is twice the change that occurs for horizontal 
separation.

Demonstrate this 2-millimeter increase in separation. 
The following outline may be useful. Take the gravi­
tational acceleration at the surface of Earth to be^„ =
9.8 meters/second^ and the radius of Earth to be r„ =  
6.37 X 10® meters. More generally, the gravitational 
acceleration of a particle of mass m a distance r from 
the center of Earth (mass M) is given by the expression

F
m

GM GM ti
4 .2

a Take the differential of this equation for g to 
obtain an approximate algebraic expression for Ag, 
the change in g, for a small change Ar in height.

b Now use Ay  =  to 6od an algebraic

expression for increase in distance Ay  between ball 
bearings in a fall that lasts for time t.

C Substitute numbers given in the quotation 
above to verify the 2-millimeter change in separation 
during fall.

2-9 the rising railway coach
You are launched upward inside a railway coach in a 
horizontal position with respect to the surface of 
Earth, as shown in the figure. After the launch, but 
while the coach is still rising, you release two ball 
bearings at opposite ends of the train and at rest with 
respect to the train.

a Riding inside the coach, will you observe the 
distance between the ball bearings to increase or de­
crease with time?

b Now you ride in a second railway coach 
launched upward in a vertical position with respect to

□ □ □ □ □ □ □ □ □ D O  

--------- 0 ^

EXERCISE 2-9. Free-float ra ilw a y  coach rising  from  E a r th ’s su r­
face, as observed in  E arth  fram e. Tw o ha ll bearings were ju s t  
released from  rest w ith  respect to the coach. W h a t w i l l  be their  
subsequent motion as observed from  inside the coach? Figure not to 
scale.

the surface of Earth (not shown). Again you release 
two ball bearings at opposite ends of the coach and at 
rest with respect to the coach. Will you observe these 
ball bearings to move together or apart?

c In either of the cases described above, can you, 
the rider in the railway coach, distinguish whether the 
coach is rising or falling with respect to the surface of 
Earth solely by observing the ball bearings from inside 
the coach? W hat do you observe at the moment the 
coach stops rising with respect to Earth and begins to 
fall?

2-10 test particle?
a Verify the statement in Section 2.5 that a can­

didate test particle of mass 10 kilograms placed 0.1 
meter from a less massive particle (initially stationary 
with respect to it), draws the second toward it by 1 
millimeter in less than 3 minutes. If this relative 
motion is detectable by equipment in use at the test 
site, the result disqualifies the 10-kilogram particle as 
a “test particle.’’ Assume that both particles are 
spherically symmetric. Use Newton’s Law of Gravi­
tation:

GMm

where the gravitation constant G has the value G =  
6.673 X 10~“  meterV(kilogram-second^). Assume 
that this force does not change appreciably as the 
particles decrease separation by one millimeter.

b Section 2.3 describes two ball bearings re­
leased 20 meters apart horizontally in a freely falling 
railway coach. They move 1 millimeter closer together 
during 8 seconds of free fall, showing the limitations 
on this inertial frame. Verify that these ball bearings 
qualify as test particles by estimating the distance that 
one will move from rest in 8 seconds under the gravi­
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tational attraction of the other, if both were initially at 
rest in interstellar space far from Earth. Make your 
own estimate of the mass of each ball bearing.

PROBLEMS
2-11 communications storm!
Sun emits a tremendous burst of particles that travels 
toward Earth. An astronomer on Earth sees the emis­
sion through a solar telescope and issues a warning. 
The astronomer knows that when the particles arrive, 
they will wreak havoc with broadcast radio transmis­
sion. Communications systems require three minutes 
to switch from broadcast to underground cable. What 
is the maximum speed of the particle pulse emitted by 
Sun such that the switch can occur in time, between 
warning and arrival of the pulse? Take Sun to be 500 
light-seconds from Earth.

2-12 the Dicke experiment
a The Leaning Tower of Pisa is about 5 5 meters 

high. Galileo says, “The variation of speed in air 
between balls of gold, lead, copper, porphyry, and 
other heavy materials is so slight that in a fall of 100 
cubits [about 46 meters} a ball of gold would surely 
not outstrip one of copper by as much as four fingers. 
Having observed this I came to the conclusion that in 
a medium totally devoid of resistance all bodies 
would fall with the same speed.”

Taking four fingers to be equal to 7 centimeters, 
find the maximum fractional difference in the accel­
eration of gravity ^ g /g  between balls of gold and

copper that would be consistent with Galileo’s exper­
imental result.

b The result of the more modern Dicke experi­
ment is that the fraction H^g/g is not greater than 3 X 

Assume that the fraction has this more recently 
determined maximum value. Reckon how far behind 
the first ball the second one will be when the first 
reaches the ground if they are dropped simultaneously 
from the top of a 46-meter vacuum chamber. Under 
these same circumstances, how far would balls of 
different materials have to fall in a vacuum in a 
uniform gravitational field of 10 meters/second/se- 
cond for one ball to lag behind the other one by a 
distance of 1 millimeter? Compare this distance with 
the Earth-Moon separation (3.8 X 10® meters). 
Clearly the Dicke experiment was not carried out 
using falling balls!

C A plumb bob of mass m hangs on the end of a 
long line from the ceiling of a closed room, as shown 
in the first figure (left). A very massive sphere at one 
side of the closed room exerts a horizontal gravita­
tional force mg, on the plumb bob, where g, =  GM / 
E}, M  is the mass of the large sphere, and R the 
distance between plumb bob and the center of the 
sphere. This horizontal force causes a static deflection 
of the plumb line from the vertical by the small angle 
£. (Similar practical example: In northern India the 
mass of the Himalaya Mountains results in a slight 
sideways deflection of plumb lines, causing difficul­
ties in precise surveying.) The sphere is now rolled 
around to a corresponding position on the other side 
of the room (right), causing a static deflection of the 
plumb by an angle fi of the same magnitude but in the 
opposite direction.

EXERCISE 2 -1 2 , first figure. L e ft:  Nearby massive sphere results 
in  sta tic  deflection o f  p lum b line from  vertical. R ig h t:  R olling  the

sphere to the other side results in  s ta tic  deflection o f  p lum b line in  the 
opposite direction.
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Now the angle S is very small. (Deflection due to 
the Himalayas is about 5 seconds of arc, which equals 
0.0014 degrees.) However, as the sphere is rolled 
around and around outside the closed room, an ob­
server inside the room can measure the gravitational 
field gj due to the sphere by measuring with greater 
and greater precision the total deflection angle 2 e ~  2 
sin £ of the plumb line, where fi is measured in ra­
dians. Derive the equation that we will need in the 
calculation of gj.

d We on Earth have a large sphere effectively 
rolling around us once every day. It is the most mas­
sive sphere in the solar system: Sun itself! What is the 
value of the gravitational acceleration g, =  GM/R^ 
due to Sun at the position of Earth? (Some constants 
useful in this calculation appear inside the back cover 
of this book.)

e One additional acceleration must be consid­
ered that, however, will not enter our final compari­
son of gravitational acceleration ĝ  for different mate­
rials. This additional acceleration is the centrifugal 
acceleration due to the motion of Earth around Sun. 
When you round a corner in a car you are pressed 
against the side of the car on the outward side of the 
turn. This outward force— called the centrifugal 
pseudoforce or the centrifugal inertial force— is due 
to the acceleration of your reference frame (the car) 
toward the center of the circular turn. This centrifugal 
inertial force has the value m vl^Jr, where is the 
speed of the car in conventional units and r is the 
tadius of the turn. Now Earth moves around Sun in a 
path that is nearly circular. Sun’s gravitational force 
mĝ  acts on a plumb bob in a direction toward Sun; the 
centrifugal inertial force m v^^JR  acts in a direction 
away from Sun. Compare the “centrifugal accelera­
tion” position of Earth with the oppo­
sitely directed gravitational acceleration g, calculated 
in part d. W hat is the net acceleration toward or away 
from Sun of a particle riding on Earth as observed in 
the (accelerated) frame of Earth?

f  Of what use is the discussion thus far? A plumb 
bob hung near the surface of Earth experiences a 
gravitational acceleration ĝ  toward Sun— and an 
equal but opposite centrifugal acceleration mvl^^/R  
away from Sun. Therefore —  in the acceletating refer­
ence frame of Earth —  the bob experiences no net 
force at all due to the presence of Sun. Indeed this is 
the method by which we constructed an inertial frame 
in the first place (Section 2.2): Let the frame be in free 
fall about the center of gravitational attraction. A 
particle at rest on Earth’s surface is in free fall about 
Sun and therefore experiences no net force due to Sun. 
What then does all this have to do with measuring the 
equality of gtavitational acceleration for particles 
made of different substances —  the subject of the

Dicke experiment? Answer: Our purpose is to detect 
the difference— if any— in the gravitational accelet- 
ation gj toward Sun for different materials. The cen­
trifugal acceleration v^/R  away from Sun is presum­
ably the same for all materials and therefore need not 
entet any comparison of different materials.

Consider a torsion pendulum suspended from its 
center by a thin quartz fiber (second figure). A light 
rod of length L  supports at its ends two bobs of equal 
mass made of different materials —  say aluminum 
and gold. Suppose that the gravitational acceleration 
gi of the gold due to Sun is slightly greater than the 
acceleration g2 of the aluminum due to Sun. Then 
there will be a slight net torque on the torsion pendu­
lum due to Sun. Fot the position of Sun shown at left 
in the figure, show that the net torque is counter­
clockwise when viewed from above. Show also that 
the magnitude of this net torque is given by the 
expression

torque =  mgi L /2  — mg  ̂ L /2  =  m{g  ̂ — g ^  L /2 
=  mgsi^g/g) L /2

g Suppose that the fraction (Ag/gP has the 
maximum value 3 X 1 consistent with the results 
of the final experiment, that L has the value 0.06 
meters, and that each bob has a mass of 0.03 kilo­
grams. What is the magnitude of the net torque? 
Compare this to the torque provided by the added 
weight of a bacterium of mass 10“ ’̂ kilogram placed 
on the end of a meter stick balanced at its center in the 
gravitational field of Earth.

h Sun moves atound the heavens as seen from 
Earth. Twelve hours later Sun is located as shown at 
right in the second figure. Show that under these 
changed citcumstances the net torque will have the 
same magnitude as that calculated in part g  but now 
will be clockwise as viewed from above —  in a sense 
opposite to that of part g. This change in the sense of 
the torque every twelve hours allows a small differ­
ence Ag =  gt ~  g2 in the acceleration of gold and 
aluminum to be detected using the torsion pendu­
lum. As the torsion pendulum jiggles on its fiber 
because of random motion, passing trucks. Earth 
tremors and so forth, one needs to consider only those 
deflections that keep step with the changing position 
of Sun.

i A torque on the rod causes an angular rotation 
of the quartz fiber of 6  radians given by the formula

torque =  k9

where k is called the torsion  constant of the fiber. 
Show that the maximum angular rotation of the tor­
sion pendulum from one side to the other during one
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EXERCISE 2 -12 , second figure. Schematic d iagram  o f  the 
D icke experiment. L e ft;  H ypothetica l effect: morning. R ig h t:  H y ­
pothetica l effect: evening. A n y  difference in  the g ra v ita tio n a l accel­
eration o f  Sun fo r  gold a n d  a lum inum  should result in  opposite sense

o f  net torque on torsion pendulum  in  the evening compared w ith  the 
morning. The large a lum inum  h a ll has the same mass as the sm all 
high-density gold ball.

rotation of Earth is given by the expression

mg,L ( Ag''e„
Ss

j In practice Dicke’s torsion balance can be 
thought of as consisting of 0.030-kilogram gold and 
aluminum bobs mounted on the ends of a beam 6 X 
10“  ̂ meter in length suspended in a vacuum on a 
quartz fiber of torsion consrant 2 X 10”® newton 
meter/radian. A statistical analysis of the angular 
displacements of this torsion pendulum over long 
periods of time leads to the conclusion that the frac­
tion A^/g for gold and aluminum is less than 3 X 
10” *k To what mean maximum angle of rotation 
from side to side during one rotation of Earth does this 
correspond? Random motions of the torsion 
pendulum —  noise! —  are of much greater amplitude 
than this; hence the need for the statistical analysis of 
the results.
References: R. H. Dicke, “The Eocvos Experiment,” Scientific 
American, Volume 205, pages 8 4 —94 (December, 1961). See also 
P. G. Roll, R. Krockov, and R. H. Dicke, Annals o f Physics, Volume 
26, pages 4 4 2 -5 1 7  (1964). The first of these articles is a popular 
exposition written early in the course of the Dicke experiment. The 
second article reports the final results of the experiment and takes on 
added interest because of its account of the elaborate precautions 
required to insure that no influence that might affect the experiment 
was disregarded. Galileo quote from Galileo Galilei, Dialogues Con­
cerning Two New Sciences, translated by Henry Crew and Alfonso de 
Salvio (Northwestern University Press, Evanston, Illinois, 1950).

2-13 deflection of starlight by 
Sun

Esrimate the deflection of starlight by Sun using an 
elementary analysis. Discussion: Consider first a 
simpler example of a similar phenomenon. An eleva­
tor car of width L is released from rest near the surface 
of Earth. At the instant of release a flash of light is 
fired horizontally from one wall of the car toward the 
other wall. After release the elevator car is an inertial 
frame. Therefore the light flash crosses the car in a 
straight line with respect to the car. With respect to 
Eatth, however, the flash of light is falling —  because 
the elevator is falling. Therefore a light flash is de­
flected in a gravitation field, as Newton would phrase 
it. (How would Einstein phrase it? See Chapter 9.) As 
another example, a ray of starlight in its passage 
tangentially across Earth’s surface receives a gravita­
tional deflection (over and above any refraction by 
Earth’s atmosphere). However, the time to cross 
Earth is so short, and in consequence the deflection so 
slight, that this effect has not yet been detected on 
Earth. At the sutface of Sun, however, the acceleration 
of gravity has the much greater value of 275 meters/ 
second/second. Moreover, the time of passage across 
the surface is much increased because Sun has a 
greater diameter, 1.4 X 10'-' meters. In the following, 
assume that the light just grazes rhe surface of Sun in 
passing.

a Determine an “effective time of fall’’ from the
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diameter of Sun and the speed of light. From this time 
of fall deduce the net velocity of fall toward Sun 
produced by the end of the whole period of gravita­
tional interaction. (The maximum acceleration acting 
for this “effective time” produces the same net effect 
[calculus proofl} produced by the acmal acceleration 
— changing in magnitude and direction along the 
path —  in the entire passage of the ray through Sun’s 
field of force.)

b Comparing the lateral velocity of the light with

its forward velocity, deduce the angle of deflection. 
The accurate analysis of special relativity gives the 
same result. However, Einstein’s 1915 general rela­
tivity predicted a previously neglected effect, asso­
ciated with the change of lengths in a gravitational 
field, that produces something like a supplementary 
refraction of the ray of light and doubles the predicted 
deflection. [Deflection observed in 1947 eclipse of 
Sun; (9.8 ±  1.3) X 10“  ̂radian; in the 1952 eclipse: 
(8.2 ±  0.5) X 10-6 radian.}





The name relativity theory was an unfortunate 
choice: The relativity of space and time is not the essential 
thing, which is the independence of laws of Nature from 
the viewpoint of the observer.

Arnold Sommerfeld

3.1 THE PRINCIPLE OF RELATIVITY
f undamental science needs only a closed room

How do you know you are moving? Or at rest? In a car, you pause at a stoplight. You 
see the car next to you easing forward. With a shock you suddenly realize that, instead, 
your own car is rolling backward. On an international flight you watch a movie with 
the cabin shades drawn. Can you tell if the plane is traveling at minimum speed or full 
speed? In an elaborate joke, could the plane acmally be sitting still on the runway, 
engines running? How would you know?

Everyday observations such as these form the basis for a conjecture that Einstein 
raised to the status of a postulate and set at the center of the theory of special relativity. 
He called it the P rincip le  o f Relativity. Roughly speaking, the Principle of 
Relativity says that without looking out the window you cannot tell which reference 
frame you are in or how fast you are moving.

Galileo Galilei made the first known formulation of the Principle of Relativity. 
Listen to the characters in his book:

SALVATIUS: Shut yourself up with some friend in the main cabin below decks on some 
large ship, and have with you there some flies, butterflies, and other small flying animals. 
Have a large bowl of water with some fish in it; hang up a bottle that empties drop by 
drop into a wide vessel beneath it. W ith the ship standing still, observe carefully how the 
little animals fly with equal speed to all sides of the cabin. The fish swim indifferently in 
all directions; the drops fall into the vessel beneath; and, in throwing something to your 
friend, you need throw it no more strongly in one direction than another, the distances 
being equal; jumping with your feet together, you pass equal spaces in every direction. 
When you have observed all these things carefully (though there is no doubt that when 
the ship is standing still everything must happen in this way), have the ship proceed with 
any speed you like, so long as the motion is unifotm and not fluctuating this way and that. 
You will discover not the least change in all the effects named, nor could you tell from any

5 3

Principle of Relativity:
With shades drawn you cannot tell 
your speed

Galileo; First known formulation 
of Principle of Relativity



5 4  CHAPTER 3 SAME LAWS FOR ALL

of them whether the ship was moving or standing still. In jumping, you will pass on the 
floor the same spaces as before, nor will you make larger jumps toward the stern than 
toward the prow even though the ship is moving quite rapidly, despite the fact that during 
the time that you are in the air the floor under you will be going in a direction opposite to 
your jump. In throwing something to your companion, you will need no more force to get 
it to him whether he is in the direction of the bow or the stern, with yourself situated 
opposite. The droplets will fall as before into the vessel beneath without dropping toward 
the stern, although while the drops are in the air the ship runs many spans. The fish in 
their water will swim toward the front of their bowl with no more effort than toward the 
back, and will go with equal ease to bait placed anywhere around the edges of the bowl. 
Finally the butterflies and flies will continue their flights indifferently toward every side, 
nor will it ever happen that they are concentrated toward the stern, as if tired out from 
keeping up with the course of the ship, from which they will have been separated during 
long intervals by keeping themselves in the air . . .

GALILEO GALILEI
Pisa, February 15, 1 5 6 4 — A rcetri, near Florence, J a n u a ry  8 , 1 6 4 2

“My portrait is now finished, a very good likeness, by an excellent hand.”
— September 22, 1635

*  *  *

“If ever any persons might challenge to be signally distinguished for their intellect from 
other men, Ptolemy and Copernicus were they that had the honor to see farthest into and 
discourse most profoundly of the World’s systems.”

* * *
“My dear Kepler, what shall we make of all this? Shall we laugh, or shall we cry?”

“When shall I cease from wondering?”
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SAGREDUS: Although it did not occut to me to put these observations to the test when I 
was voyaging, I am sure that they would take place in the way you desaibe. In 
confirmation of this I remember having often found myself in my cabin wondering 
whether the ship was moving or standing still; and sometimes at a whim I have supposed 
it to be going one way when its motion was the opposite . . .

The Galilean Principle of Relativity is simple in this early formulation, yet not as 
simple as it might be. In what way is it simple? Physics looks the same in a ship moving 
uniformly as in a ship at rest. Relative uniform motion of the two ships does not affect 
the laws of motion in either ship. A ball falling straight down onto one ship appears 
from the other ship to follow a parabolic course; a ball falling straight down onto that 
second ship also appears to follow a parabolic course when observed from the first ship. 
The simplicity of the Galilean Principle of Relativity lies in the equivalence of the two 
Earthbound frames and the symmetry between them.

In what way is this simplicity not as great as it might be? In Galileo’s account the 
frames of reference are not yet free-float (inertial). To make them so requires only a 
small conceptual step; from two uniformly moving sea-going ships to two unpowered 
spaceships. Then up and down, north and south, east and west, all become alike. A 
ball untouched by force undergoes no acceleration. Its motion with respect to one 
spaceship is as uniform as it is with respect to the other. This identity of the law of free 
motion in all inertial reference frames is what one means today by the Galilean 
Principle of Relativity.

Galileo could not by any stretch of the imagination have asked his hearer to place 
himself in a spaceship in the year 1632. Yet he could have described the greater 
simplicity of physics when viewed from such a vantage point. Bottles, drops of water, 
and all the other test objects float at rest or move at uniform velocity. The zero 
acceleration of every nearby object relative to the spaceship would have been intelligi­
ble to Galileo of all people. Who had established more clearly than he that relative to 
Earth all nearby objects have a common acceleration?

Einstein’s Principle of Relativity is a generalization of such experiments and many 
other kinds of experiments, involving not only mechanics but also electromagnetism, 
nuclear physics, and so on.

All the laws of physics are the same in every free-float (inertial) reference 
frame.

Extension of G alileo's reasoning 
from ship to spaceship

Principle of Relativity

Einstein’s Principle of Relativity says that once the laws of physics have been estab­
lished in one free-float frame, they can be applied without modification in any other 
free-float frame. Both the mathematical form of the laws of physics and the numerical 
values of basic physical constants that these laws contain are the same in every 
free-float frame. So far as concerns the laws of physics, all free-float frames are 
equivalent.

We can tell where we are on Earth by looking out of the window. Where we are in 
the Milky Way we can tell by the configuration of the Big Dipper and other 
constellations. How fast and in what direction we are going through the larger 
framework of the universe we measure with a set of microwave horns pointed to pick 
up the microwave radiation streaming through space from all sides. But now exclude 
all information from outside. Screen out all radiation from the heavens. Pull down the 
window shade. Then do whatever experiment we will on the movement and collision 
of particles and the action of electric and magnetic forces in whatever free-float frame 
we please. We find not the slightest difference in the fit to the laws of physics between 
measurements made in one free-float frame and those made in another. We arrive at 
the Principle of Relativity in its negative form;

No test of the laws of physics provides any way whatsoever to distinguish one 
free-float frame from another.

Principle of Relativity, 
negative form
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BOX

THE PRINCIPLE OF RELATIVITY RESTS ON
EMPTINESS!

In his paper on special relativity, Einstein says, “We will raise this conjecture 
(whose intent will from now on be referred to os the ‘Principle of Relativity’) to 
o postulate . . . ” Is the Principle of Relativity just o postulate? All of special 
relativity rests on it. How do we know it is true? What lies behind the Principle 
of Relativity?

This is a philosophical question, not a scientific one. You will have your own 
opinion; here is ours. We think the Principle of Relativity as used in special 
relativity rests on one word: emptiness.

Space is empty; there are no kilometer posts or mileposts in space. Do you 
want to measure distance and time? Then set up a latticework of meter sticks 
and clocks. Pace off the meter sticks, synchronize the clocks. Use the lattice- 
work to carry out your measurements. Discover the laws of physics. This 
latticework is your construction, not Nature's. Do not ask Nature to choose 
your latticework in preference to the similar latticework that I have con­
structed. Why not? Because space is empty. Space accommodates both of us 
as we go about our constructions and our investigations. But it does not 
choose either one of us in preference to the other. How can it? Space is 
empty. Nothing whatever can distinguish your latticework from mine. If we 
decide in secret to exchange latticeworks. Nature will never be the wiser! It 
follows that whatever laws of physics you discover employing your lattice- 
work must be the same laws of physics I discover using my latticework. The 
same is true even when our lattices move relative to one another. Which one 
of us is at rest? There is no way to tell in empty space! This is the Principle of 
Relativity.

But is space rea lly  empty? “Definitely not!” says modern quantum physics. 
“Space is a boiling cauldron of virtual particles. To observe this cauldron.

Space and time separations 
not the same in different frames

3.2 WHAT IS NOT THE SAME IN 
DIFFERENT FRAMES

not the same: space separations, 
time separations, velocities, 
accelerations, forces, fields

Notice what the Principle of Relativity does say. It does not say that the time 
between two events is the same when measured from two different free-float frames. 
Neither does it say that space separation between the two events is the same in the two 
frames. Ordinarily neither time nor space separations are the same in the two frames.

The catalog of differences between readings in the two frames does not end with 
labotatory and rocket records of pairs of events. Physics to the Greeks meant the 
science of change and so it does to us today. Motion gives us a stream of events, for 
example the blinks of a firefly or the pulses of a sparkplug flashing as it moves. These 
flashes trace out the sparkplug’s trajectory. Record the positions of two sequential
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sample regions of space much smaller than the proton. Carry out this sam­
pling during times much shorter than the time it takes light to cross the diame­
ter of the proton.” These words are familiar or utterly incomprehensible, 
depending on the amount of our experience with physics. In either case, we 
can avoid dealing with the “ boiling cauldron of virtual particles” by observ­
ing events that are far apart compared with the dimensions of the proton, 
events separated from one another by times long compared with the time it 
takes light to cross the diameter of the proton.

In the realm of classical (nonquantum) physics is space really empty? “Of 
course not!” says modern cosmology. “Space is full of stars and dust and 
radiation and neutrinos and white dwarfs and neutron stars and (many be­
lieve) black holes. To observe these structures, sample regions of space 
comparable in size to that of our galaxy. These structures evolve and move 
with respect to one another in times comparable to millions of years.”

So we choose regions far from massive structures, avoid dust, ignore neu­
trinos and radiation, and measure events that take place close together in 
time compared with a million years.

Notice that for the very small and also for the very large, the “ regions” 
described span both space and time —  they are regions o f  sp a ce tim e . “ Emp­
tiness” refers to spacetime. Therefore we should have said from the begin­
ning, “ S p a ce tim e  is empty” —  except for us and our apparatus —  with limita­
tions described above.

In brief, we can find “effectively empty” regions of spacetime of spatial 
extent quite a few orders of magnitude larger and smaller than dimensions of 
our bodies and of time spread quite a few orders of magnitude longer and 
shorter than times that describe our reflexes. In spacetime regions of this 
general size, empty spacetime can be found. In empty spacetime the Principle 
of Relativity applies. Where the Principle of Relativity applies, special relativ­
ity correctly describes Nature.

spark emissions in the laboratory frame. Record also the laboratory time between these 
sparks. Divide the change in position by the increase in time, yielding the laboratory- 
measured velocity of the sparkplug.

Spark events have identities that rise above all differences between reference frames. 
These events are recorded not only in the laboratory but also by recording devices and 
clocks in the rocket latticework. From the printouts of the recorders in the rocket frame 
we read off rocket space and time separations between sequential sparks. We divide. 
The quotient gives the rocket-measured velocity of the sparkplug. But both the space 
separation and the time separation between events, respectively, are ordinarily differ­
ent for the rocket frame than for the laboratory frame. Therefore the rocket-measured 
velocity of the sparkplug is different from the laboratory-measured velocity of that 
sparkplug. Same world. Same motion. Different records of that motion. Figures for 
velocity that differ between rocket and laboratory.

Apply force to a moving object: Its velocity changes; it accelerates. Acceleration is 
the signal that force is being applied. Two events are enough to reveal velocity; three 
reveal change in velocity, therefore acceleration, therefore force. The laboratory ob­
server reckons velocity between the first and second events, then he reckons velocity

Velocity not the some

Acceleration not the some
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THE SPEED OF LIGHT
A  ""fundamental constant of nature""?
O r a mere factor of conversion between tw o units of measurement?

METERS AND MILES IN THE 
PARABLE OF THE SURVEYORS

Meter?
Originally (adopted France, 1799) one ten-millionth of 
the distance along the surface of Earth from its equator 
to its pole (in o curved line of latitude passing through 
the center of Paris).

Mile?
Originally one thousand p a c e s  —  double step: right to 
left to right— of the Roman soldier.

Modern conversion factor?
1609.344 meters per mile.

Authority for this number?
Measures of equotor-to-pole distance eventually 
(1799 to today) lagged in accuracy compared to labo­
ratory measurement of distance. So the platinum meter 
rod at Sevres, Paris, approximating one ten-millionth of 
that distance, for awhile became —  in and by itself —  
the standard of distance. During that time the British 
Parliament and the United States Congress redefined 
the inch to be e x a ctly  2.54 centimeters. This decree 
made the conversion factor (5280 feet/mile) times (12 
inches/foot) times (2.54 centimeters/inch) times (1/100 
of a meter per centimeter) equal to 1609.344 meters 
per mile —  exactly!

A fundamental constant of nature?
Hardly! Rather, the work of two centuries of commit­
tees.

SECONDS AND METERS IN SPACETIME

Second?
Originally 1/24 of 1/60 of 1/60 of the time from high 
noon one day to high noon the next day. Since 1967, 
‘ ‘The second is the duration of 9,192,631,770 periods 
of the radiation corresponding to the transition be­
tween the two hyperflne levels of the fundamental state 
of the atom cesium 133.”

Meter?
Definition evolved from geographic to platinum meter 
rod to today’s ‘‘One meter is the distance traveled by 
light, in vacuum, in the fraction 1/299,792,458 of a 
second.”

Modern conversion factor?
299,792,458 meters per second.

Authority for this number?
Meeting of General Conference on Weights and Mea­
sures, 1983. In the accepted definition of the meter 
important changes took place over the years, and like­
wise in the definition of the second. With the 1983 defi­
nition of the meter these two streams of development 
have merged. What used to be understood as a mea­
surement of the speed of light is understood today as 
two ways to measure separation in spacetime.

A fundamental constant of nature?
Hardly! Rather, the work of two centuries of commit­
tees.

Force not the some

between the second and third events. Subtracting, he obtains the change in velocity. 
From this change he figures the force applied to the object.

The rocket observer also measures the motion; velocity between the first and second 
events, velocity between second and third events; from these the change in velocity; 
from this the force acting on the object. But the rocket-observed velocities are not 
equal to the corresponding laboratory-observed velocities. The change in velocity also 
differs in the two frames; therefore the computed force on the object is different for
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Commentary
Is the distance from Earth’s equator to its pole a fundamental constant of 
nature? No. Earth is plastic and ever changing. Is the distance betNveen the 
two scratches on the standard meter bar constant? No. Oxidation from 
decade to decade slowly changes it. Experts in the art and science of mea­
surement move to ever-better techniques. They search out an ever-better 
object to serve as benchmark. Via experiment after experiment they move 
from old standards of measurement to new. The goals? Accuracy. Availabil­
ity. Dependability. Reproducibility.

Make a better measurement of the speed of light. Gain in that way better 
knowledge about light? No. Win instead an improved value of the ratio 
between one measure of spacetime interval, the meter, and another such 
measure, the second —  both of accidental and historical origin? Before 
1983, yes. Since 1983, no. Today the meter is d e fin e d  as the distance light 
travels in a vacuum in the fraction 1/299,792,458 of a cesium-defined sec­
ond. The two great streams of theory, definition, and experiment concerning 
the meter and the second have finally been unified.

What will be the consequence of a future, still better, measuring technique? 
Possibly it will shift us from the cesium-atom-based second to a pulsar-based 
second or to a still more useful standard for the second. But will that improve­
ment in precision change the speed of light? No. Every past International 
Committee on Weights and Measures has operated on the principle of mini­
mum dislocation of standards; we have to expect that the speed of light will 
remain at the decreed figure of 299,792,458 meters per second, just as the 
number of meters in the mile will remain at 1609.344. Through the fixity of this 
conversion factor c, any substantial improvement in the accuracy of defining 
the second will bring with it an identical improvement in the accuracy of 
defining the meter.

Is 299,792,458 a fundamental constant of nature? Might as well ask if 5280 
is a fundamental constant of nature!

rocket observer and laboratory observer. The Principle of Relativity does not deny that 
the force acting on an object is different as reckoned in two frames in relative motion.

An electric field or a magnetic field or some combination of the two, acting on the 
electron, is the secret of action of many a device doing its quiet duty day after day in 
home, factory, or car. An electromagnetic force acting on an electron changes its 
velocity as it moves from event P  to event Q and from Q  to R . Laboratory and rocket 
observers do not agree on this change in velocity. Therefore they do not agree on the

Electric and magnetic fields 
not the same
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value of the force that changes that velocity. Nor, finally, do they agree on the 
magnitudes of the electric and magnetic fields from which the force derives.

In brief, figures for electric and magnetic field strengths, for forces, and for 
accelerations agree no better between rocket and laboratory observers than do figures 
for velocity. The Principle of Relativity does not deny these differences. It celebrates 
them. It explains them. It systematizes them.

3.3 WHAT IS THE SAME IN DIFFERENT 
FRAMES

the same: physical laws, physical constants in 
those laws

Laws of physics the same 
in different frames

Fundamental constants the same

Speed of light the same

Different values of some physical quantities between the two frames? Yes, but 
identical physical /a m /  For example, the relation between the force acting on a particle 
and the change in velocity per unit time of that particle follows the same law in the 
laboratory frame as in the rocket frame. The force is not the same in the two frames. 
Neither is the change in velocity per unit time the same. But the law that relates force 
and change of velocity per unit time is the same in each of the two frames. All the laws 
of motion are the same in the one free-float frame as in the other.

Not only the laws of motion but also the laws of electromagnetism and all other 
laws of physics hold as true in one free-float frame as in any other such frame. This is 
what it means to say, “No test of the laws of physics provides any way whatsoever to 
distinguish one free-float frame from another.”

Deep in the laws of physics are numerical values of fundamental physical constants, 
such as the elementary charge on the electron and the speed of light. The values of 
these constants must be the same as measured in overlapping free-float frames in 
relative motion; otherwise these frames could be distinguished from one another and 
the Principle of Relativity violated.

One basic physical constant appears in the laws of electromagnetism: the speed of 
light in a vacuum, c =  299,792,458 meters per second. According to the Principle of 
Relativity, this value must be the same in all free-float frames in uniform relative 
motion. Has observation checked this conclusion? Yes, many experiments demon­
strate it daily and hourly in every particle-accelerating facility on Earth. Nevertheless, 
it has taken a long time for people to become accustomed to the apparently absurd 
idea that there can be one special speed, the speed of light, that has the same value 
measured in each of two overlapping free-float frames in relative motion.

Values of the speed of light as measured by laboratory and by rocket observer turn 
out identical. This agreement has cast a new light on light. Its speed rates no longer as a 
constant of nature. Instead, today the speed of light ranks as mere conversion factor 
between the meter and the second, like the factor of conversion from the centimeter to 
the meter. The value of this conversion factor has now been set by decree and the meter 
defined in terms of it (Box 3.2). This decree assumes the invariance of the speed of 
light. No experimental result contradicts this assumption.

In 1905 the PrincipleofRelativity was a shocking heresy. It offended most people’s 
intuition and common-sense way of looking at Nature. Consequences of the Principle 
of Relativity are tried out every day in many experiments where it is continually under 
severe test. Never has this Principle been verified to lead to a single incorrect experi­
mental prediction.
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EXAMPLES OF THE PRINCIPLE OF 
RELATIVITY
Two overlapping free-float frames are in uniform must necessarily be the same as measured in the 
relative motion. According to the Principle of Rel- two frames? Which quantities are not necessarily 
ativity, which of the quantities on the following list the same as measured in the two frames?

a. numerical value of the speed of light in a vacuum

b. speed of an electron

c. value of the charge on the electron

d. kinetic energy of a proton (the nucleus of a hydrogen atom)

e. value of the electric field at a given point

f. time between two events

g. order of elements in the periodic table

Newton’s First Law of Motion (“A particle initially at rest remains at rest, 
and . . . ”)

SOLUTION

b.

d.

e.

The speed of light IS necessarily the same in the two frames. This is one of the 
central tenets of the Principle of Relativity and a basis of the theory of relativity.

The speed of an electron IS NOT necessarily the same in the two frames. 
Determining the speed of a particle depends on space and time measurements 
between events —  such as flashes emitted by the particle. Space and time separa­
tions between events, respectively, can be measured to be different for observers 
in relative motion. So the speed— ratio of distance covered to time elapsed —  can 
be different.

The value of the charge on the electron IS necessarily the same in the two frames. 
Suppose that the charge had one value for the laboratory frame and progressively 
smaller values for rocket frames moving faster and faster relative to the laboratory 
frame. Then we could detect the “absolute velocity’’ of the ftame we are in by 
measuring the charge on the electron. But this violates the Principle of Relativity. 
Therefore the charge on the electron must have the same value in all free-float 
frames.

The kinetic energy of a proton IS NOT necessarily the same in the two frames. 
The value of its kinetic energy depends on the speed of the proton. But speed is 
not necessarily the same as measured in the two frames (b).

The value of the electric field at a given point IS NOT necessarily the same in the 
two frames. The argument is indirect but inescapable: The electric field is 
measured by determining the force on a test charge. Force can be measured by 
change in velocity that the force imparts to a particle of known mass. But the 
velocity— and the change in velocity —  of a particle can be different for observers 
in relative motion (b). Therefore the electric field may be different for observers in 
relative motion.

The time between two events IS NOT necessarily the same in the two frames. 
This is a direct result of the invariance of the interval (Chapter 1 and Section 3.7).
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S A M P L E  P R O B L E M  3 -1

g. The order of elements in the periodic table by atomic number IS necessarily the 
same in the two frames. For suppose that the atomic number (the number of 
protons in the nucleus) were smaller for helium than for uranium in the labora­
tory frame but greater for helium than for uranium in the rocket frame. Then we 
could tell which frame we were in by comparing the atomic numbers of helium 
and uranium.

h. Newton’s First Law of Motion IS necessarily the same in the two frames. 
Newton’s First Law is teally a definition of the inertial (free-float) frame. We 
assume that all laboratory and rocket frames are inertial.

3.4 RELATIVITY OF SIMULTANEITY
''same lim e"? ordinarily true for only one 
frame!

Train Paradox: Two lightning bolts 
strike simultaneously 
for ground observer

Two lightning bolts do not 
strike simultaneously 

for train observer

The Principle of Relativity directly predicts effects that initially seem strange —  even 
weird. Strange or not, weird or not; logical argument demonstrates them and experi­
ment verifies them. One effect has to do with simultaneity: Let two events occur 
separated in space along the direction of relative motion between laboratory and rocket 
frames. These two events, even if simultaneous as measured by one observer, cannot be 
simultaneous as measured by both observers.

Einstein demonstrated the relativity of simultaneity with his famous Train Paradox. 
(When Einstein developed the theory of special relativity, the train was the fastest 
common cartier.) Lightning strikes the front and back ends of a rapidly moving train, 
leaving char marks on the train and on the track and emitting flashes of light that 
travel forward and backward along the train (Figure 3-1). An observer standing on the 
ground halfway between the two char marks on the track receives the two light flashes 
at the same time. He therefore concludes that the two lightning bolts struck the ttack 
at the same time — with respect to him they fell simultaneously.

A second observer rides in the middle of the train. From the viewpoint of the 
observer on the ground, the train observer moves toward the flash coming from the 
front of the train and moves away from the flash coming from the rear. Therefore the 
train observer receives the flash from the front of the train first.

This is just what the train observer finds: The flash from the front of the train arrives 
at her position first, the flash from the rear of the train arrives later. But she can verify 
that she stands equidistant from the ftont and rear of the train, where she sees char 
marks left by the lightning. Moreover, using the Principle of Relativiry, she knows 
that the speed of light has the same value in her train frame as for the ground observer 
(Section 3.3 and Box 3-2), and is the same for light traveling in both directions in her 
frame. Therefore the arrival of the flash first from the front of the train leads her to 
conclude that the lightning fell first on the front end of the train. For her the lightning 
bolts did not fall simultaneously. (To allow the train observer to make only measure­
ments with respect to the train, forcing her to ignote Earth, let the train be a cylinder 
without windows —  in other words a spaceship!)

Did the two lightning bolts strike the front and the back of the train simulta­
neously? Or did they strike at different times? Decide!

Strange as it seems, there is no unique answer to this question. For the situation 
described above, the two events are simultaneous as measured in the Earth frame; they
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FIGURE 3 -1 . Einstein’s T ra in  Paradox illustrating  the relativity o f sim ultaneity. Top: Light­
ning strikes the front and hack ends of a moving train, leaving char marks on both track and train. Each 
emitted flash spreads out in all directions. Center: Observer riding in the middle of the train concludes that 
the two strokes are not simultaneous. Her argument: “(I ) I am equidistant from the front and hack char 
marks on the train. (2) Light has the standard speed in my frame, and equal speed in both directions. (3) The 
flash arrived from the front of the train first. Therefore, (4) the flash must have left the front of the train first; 
the front lightning holt fell before the rear lightning bolt fell. I conclude that the lightning strokes were not 
simultaneous.” Bottom: Observer standing by the tracks halfway between the char marks on the tracks 
concludes that the strokes were simultaneous, since the flashes from the strokes reach him at the same time.

are not simultaneous as measured in the train frame. We say that the simultaneity of 
events is, in general, relative, different for different frames. Only in the special case of 
two or more events that occur at the same point (or in a plane perpendicular to the line 
of relative motion at that point— see Section 3.6) does simultaneity in the laboratory 
frame mean simultaneity in the rocket frame. When the events occur at different 
locations along the direction of relative motion, thev cannot be simultaneous in both 
frames. This conclusion is called the relativity  o f sim ultaneity.

The relativity of simultaneity is a difficult concept to understand. Almost without 
exception, every puzzle and apparent paradox used to “disprove” the theory of 
relativity hinges on some misconception about the relativity of simultaneity, -te r'

Simultaneity is relative

3.5 LORENTZ CONTRACTION OF LENGTH
space separation between two length­
measuring events? disagreement!

How do we measure the length of a moving rod —  the distance between one end and 
the other end? One way is to use our latticework of clocks to mark the location of the 
two ends at the same time. But when the rod lies along the direction of relative motion, 
someone riding with the rod does not agree that our marking of the positions of the 
two ends occurs at the same time (Section 3.4). The relativity of simultaneity tells us

Length of a rod =  separation  
between simultaneous sparks 
at its two ends
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Disagree about simultaneity? 
Then disagree about length.

that rocket and laboratory observers disagree about the simultaneity of two events 
(firecrackers exploding at the two ends of the rod) that occur at different locations 
along the direction of relative motion. Therefore the two observers disagree about 
whether or not a valid measurement of length has taken place.

Go back to the Train Paradox. For the observer standing on the ground, the two 
lightning bolts strike the front and back of the train at the same time. Therefore for 
him the distance between the char marks on the track constitutes a valid measure of the 
length of the train. In conrrast, rhe observer riding on the train measures rhe front 
lightning bolt to strike first, the rear bolt later. The rider on the train exclaims to her 
Earth-based colleague, “See here! Your front mark was made before the back mark 
— since rhe flash from the front reached me (at the middle of the train) before the flash 
from the back reached me. Of course the train moved during the time lapse between 
these two lightning strikes. By rhe time the stroke fell at the back of the train, the front 
of the train had moved well past the front char mark on the track. Therefore your 
measurement of the length of the train is too small. The train is really longer rhan you 
measured.”

There are other ways to measure the length of a moving rod. Many of these methods 
lead to the same result: the space separation between the ends of the rod is less as 
measured in a frame in which rhe rod is moving than as measured in a frame in which 
the rod is at rest. This effect is called Lorentz contraction . Section 5.8 examines the 
Lorentz contraction quantitatively.

Suppose we agree to measure the length of a rod by determining the position of its 
two ends at the same time. Then an observer for whom the rod is at rest measures the 
rod to be longer than does any other observer. This “rest length” of the rod is often 
called its p ro p e r length.

You keep using the word “measure.” Occasionally you say “observe.” You never talk 
about th at most delicate, sensitive, and refined of our five senses: sight. Why not ju st 
look and  see these remarkable relativistic ejfects?

We have been careful to say that the relativity of simultaneity and the Lorentz 
contraction are measured, not seen with the eye. Measurement employs the latticework 
of rods and clocks that constitutes a free-float frame. As mentioned in Chapter 2, 
seeing with the eye leads to confused images due to the finite speed of light. Stand in 
an open field in the southern hemisphere as Sun sets in the west and full Moon rises in 
the east: You see Moon as it was 1.3 seconds ago, Sun as it was eight minutes ago, the 
star Alpha Centauri (nearest star visible to the naked eye) as it was 4.34 years ago, 
the Andromeda nebula as it was 2  million years ago —  you see them all now. 
Similarly, light from the two separated ends of a speeding rod typically takes 
different times to reach your eye. This relative time delay results in visual distortion 
that is avoided when the location of each end is recorded locally, with zero or 
minimal delay, by the nearest lattice clock. Visual appearance of rapidly moving 
objects is itself an interesting study, but for most scientific work it is an unnecessary 
distraction. To avoid this kind of confusion we set up the free-float latticework of 
synchronized recording clocks and insist on its use —  at least in principle!

Aha! Then I have caught you in a  contradiction. Figure 3 - 1  shows lightning flashes 
an d  trains. Is this not a  picture of w hat we would see with our eyes?

No. Strictly speaking, each of the three “pictures” in Figure 3-1 summarizes where 
parts of the train are as recorded by the Earth latticework of clocks at a given instant 
of Earth time. The position of each light flash at this instant is also recorded by the 
clocks in the lattice. The summary of data is then given to a draftsman, who draws 
the picture for that Earth time. To distinguish such a drafted picture from the visual
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view, we will often refer to it as a plot. For example. Figure 3-1 (top) is the Earth 
plot at the time when lightning bolts strike the two ends of the train.

Actually, all three plots in Figure 3-1 show approximately what you see through a 
telescope when you are very far from the scene in a direction perpendicular ro the 
direction of motion of the train and at a position centered on the action. At such a 
remote location, light from all parts of the scene takes approximately equal times to 
reach your eye, so you would see events and objects at approximately the same time 
according ro Earth clocks. Of course, you receive this information later than it 
actually occurs because of the time it takes light to reach you.

3.6 INVARIANCE OF TRANSVERSE 
DIMENSION

''faster" does not mean "thinner" or "fatter"
A rocket ship makes many trips past the laboratory observer, each at successively 
higher speed. For each new and greater speed of the rocket, the laboratory observer 
measures its length to be shorter than it was on the trip before. This observed 
contraction is long itud inal — along its direction of motion. Does the laboratory 
observer also measure contraction in the transverse dimension, perpendicular to the 
direction of relative motion? In brief, is the rocket measured to get thinner as well as 
shorter as it moves faster and faster?

The answer is No. This is confirmed experimentally by observing the width of 
electron and proton beams traveling in high-energy accelerators. It is also easily 
demonstrated by simple thought experiments.

Speeding-Train T h ough t Experim ent: Return to Einstein’s high-speed 
railroad train seen end-on (Figure 3-2). Suppose the Earthbound observer measures 
the train to get thinner as it moves faster. Then for the Earth observer the right and left 
wheels of the train would come closer and closer together as the train speeds up, finally 
slipping off between the tracks to cause a tertible wreck. In contrast, the train observer 
regards herself as at rest and the tracks as speeding by in the opposite direction. If she

Transverse dimension same for 
laboratory and rocket observers

WRONG! WRONG!

in motion -

at rest

— H

ALLEGED "EARTH PLOT" ALLEGED "TRAIN PLOT"
FIGURE 3-2. T wo possible alternatives {both wrong!) i f  the moving tra in  is m easured to shrink 
transverse to its direction of motion. The “E arth p lo t” assumes the speeding train to be measured as 
getting thinner with increasing speed. The train’s wheels would slip o/'between the tracks. The “tra in  
p lo t” of the same circumstance assumes the speeding rails to he measured as getting closer together. In this 
case the wheels would slip off outside the tracks. But this is a  contradiction. Therefore the wheel separation 
— and the transverse dimensions of train and track — must he invariant, the same for allfree-float observers 
moving along the track. (If you think that the actual transverse contraction might be too small to cause a 
wreck for the train shown, assume that both the wheels and the track are knife edges; the same argument still 
applies.)
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Thought experiments demonstrate 
invariance of transverse dimension

measures the speeding tracks to get closer together as they move faster and faster, the 
train wheels will slip off outside the tracks, also resulting in a wreck. But this is absurd: 
the wheels cannot end up between the tracks and outside the tracks under the same 
circumstances. Conclusion: High speed leads to no measured change in transverse 
dimensions —  no observed thinning or fattening of fast objects. We are left with the 
conclusion that high relative speed affects the measuted values of longitudinal dimen­
sions but not transverse dimension: a welcome simplification!

Speeding-Pipes T h ough t Experim ent: Start with a long straight pipe. Paint 
one end with a checkerboard pattern and the other end with stripes. Cut out and 
discard the middle of the pipe, leaving only the painted ends. Now hurl the ends 
toward each other, with their cylindrical axes lying along a common line parallel to the 
direction of relative motion (Figure 3-3). Suppose that a moving object is measured to 
be thinner. Then someone riding on the checkerboard pipe will observe the striped 
pipe to pass inside her cylinder. All observers — everyone looking from the side —  will 
see a checkerboard pattern. In contrast, someone riding on the striped pipe will observe 
the checkerboard pipe to pass inside his cylinder. In this case, all observers will see a 
striped pattern. Again, this is absurd: All observers must see stripes, or all must see 
checkerboard. The only tenable conclusion is that speed has no measurable effect on 
transverse dimensions and the pipe segments will collide squarely edge on.

A simple question leads to an even more fundamental argument against the differ­
ence of transverse dimensions of a speeding object as observed by different free-float 
observers in relative motion: About w hat axis does the contraction take place?

We try to define an “axis of shrinkage’’ parallel to the direction of relative motion. 
Can we claim that a speeding pipe gets thinner by shrinking uniformly toward an 
“axis of shrinkage” lying along its center? Then what happens when two pipe 
segments move along their lengths, side by side as a pair? Does each pipe shrink 
separately, causing the clear space between them to increase? Or does the combina­
tion of both pipes contract toward the line midway between them, causing the clear 
space between them to decrease? Is the answer different if one pipe is made of lead 
and the other one of paper? Or if one pipe is entirely in our imagination?

There is no logically consistent way to define an “axis of shrinkage.’’ Given the 
direction of relative motion of two objects, we cannot select uniquely an “axis of 
shrinkage” from the infinite number of lines that lie parallel in this direction. For 
each different choice of axis a different pattern of distortions results. But this is 
logically intolerable. The only way out is to conclude that there is no transverse 
shrinkage at all (and, by a similar argument, no transverse expansion).

The above analysis leads to conclusions about events as well as about objects. A set 
of explosions occurs around the perimeter of the checkerboard pipe. More: These 
explosions occur simultaneously in this checkerboard frame. Then these events are 
simultaneous also in the striped frame. How do we know? By symmetry! For suppose 
the explosions were not simultaneous in the striped frame. Then which one of these

WRONG!

"CHECKERBOARD PLOT"

WRONG!
m m m
IJJJJJJJWJJJ

"STRIPED PLOT"

FIGURE 3-3. Tw o iden tica l-size  p ipe  
segments hurtle tow ard  each other 
along a  common centerline. W h a t w ill  
happen when they meet? Here are two  
possible a lterna tives (both w rong!) i f  a  
moving object is observed to shrink  
transverse to direction o f  motion. 
W hich p ipe passes inside the other? 
The im possibility o f  a  consistent a n ­
sw er to th is  question leads to the con­
clusion th a t neither p ipe can he mea­
sured to change transverse dimension.
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events would occur first in the striped frame? The one on the right side of the pipe or 
the one on the left side of the pipe? But “left” and “right” cannot be distinguished by 
means of any physical effect: Each pipe is cylindrically symmetric. Moreover, space is 
the same in all directions — space is isotropic, the same to right as to left. So neither 
the event on the right side nor the event on the left side can be first. They must be 
simultaneous. The same argument can be made for events at the “top” and “bottom” 
of the pipe, and for every other pair of events on opposite sides of the pipe. Conclusion: 
If the explosions are simultaneous in the checkerboard frame, they must also be 
simultaneous in the striped frame.

We make the following summary conclusions about dimensions transverse to the 
direction of relative motion:

Dimensions of moving objects transverse to the direction of relative motion 
are measured to be the same in laboratory and rocket frames (invariance of 
transverse distance).

Two events with separation only transverse to the direction of relative 
motion and simultaneous in either laboratory or rocket frame are simulta­
neous in both.

“ Same time” agreed on for 
events separated only transverse 
to relative motion

3.7 INVARIANCE OF THE INTERVAL 
PROVED

laboratory and rocket observers agree on 
something important

The Principle of Relativity has a major consequence. It demands that the spacetime 
interval have the same value as measured by observers in every overlapping free-float 
frame; in brief, it demands “invariance of the interval.” Proof? Plan of attack: 
Determine the separation in space and the separation in time between two events, E 
and R, in the rocket frame. Then determine the quite different space and time 
separations between the same two events as measured in a free-float laboratory frame. 
Then look for — and find— what is invariant. It is the “interval.” Now for the details 
(Figures 3-4 and 3-5).

Event E we take to be the reference event, the emission of a flash of light from the 
central laboratory and rocket reference clocks as they coincide at the zero of time 
(Section 2.6). The path of this flash is tracked by the recording clocks in the rocket 
lattice. Riding with the rocket, we examine that portion of the flash that flies straight 
“up” 3 meters to a mirror. There it reflects straight back down to the photodetector 
located at our rocket reference clock, where it is received and recorded. The act of 
reception constitutes the second event we consider. This event, R, is located at the 
rocket space origin, at the same location as the emission event E. Therefore, for the 
rocket observer, the space separation between event E and event R equals zero.

What is the time separation between events E and R in the rocket frame? The light 
travels 3 meters up to the mirror and 3 meters back down again, a total of 6 meters of 
distance. At the “standard” light speed of 1 meter of distance per meter of light-travel 
time, the flash takes a total of 6 meters of time to complete the round trip. In 
summary, for the rocket observer the event of reception, R, is separated from the event 
of emission, £, by zero meters in space and 6 meters in time.

What are the space and time separations of events E and R measured in the 
free-float laboratory frame? As measured in the laboratory, the rocket moves at high 
speed to the right (Figures 3-4 and 3-5). The rocket goes so fast that the simple

Principle of Relativity leads to 
invariance of spacetime interval
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FINISH

time
REACHING MIRROR

FIGURE 3-4. Plot of the flash p ath  
as recorded in the laboratory 
fram e. Time progresses from bottom to 
top: W ell started: The flash (repre­
sented as an asterisk) has been emitted 
(event Ej from a moving rocket clock 
(shown as a circle) that coincided with 
a laboratory clock (shown as a square). 
Reaching m irror and Home 
stretch: The flash reaches a mirror 
and reflects from it. The mirror moves 
along in step with the rocket clock. 
Finish: The flash is received (event 
R J back at the same rocket clock, which 
has moved in the laboratory frame to 
coincide with a second laboratory 
clock. Figure 3-5 shows the trajectory 
of the same flash in three different 
free-float frames.

G reater distance of travel 
for light flash: longer time!

up-down track of the light in the rocket frame appears in the laboratory to have the 
profile of a tent, with its right-hand corner— the place of reception of the light— 8 
meters to the right of the starting point.

When does the event of reception, R, take place as registered in the laboratory 
frame? Note that it occurs at the time 6 meters in the rocket frame. All we know about 
everyday events urges us to say, “Why, obviously it occurs at 6 meters of time in the 
laboratory frame too.” But no. More binding than preconceived expectations are the 
demands of the Principle of Relativity. Among those demands none ranks higher than 
this: The speed of light has the standard value 1 meter of distance in 1 meter of 
light-travel time in every free-float frame.

Figure 3-6 punches us in the eye with this point: The light flash travels farther as 
recorded in the laboratory frame than as recorded in the rocket frame. The perpendic­
ular “altitude” of the mirror from the line along which the rocket reference clock 
moves has the same value in laboratory frame as in rocket frame no matter how fast the 
rocket — as shown in Section 3.6. Therefore on its slanted path toward and away from 
the mirror the flash must cover more distance in the laboratory frame than it does in 
the rocket frame. More distance covered means more time required at the “standard” 
light speed. We conclude that the time between events E and R is greater in the 
laboratory frame than in the rocket frame — a staggering result that stood physics on 
its ear when first proposed. There is no way out.

In the laboratory frame the flash has to go “up” 3 meters, as before, and “down” 
again 3 meters. But in addition it has to go 8 meters to the right: 4 meters to the right 
while rising to hit the mirror, and 4 meters more to the right while falling again to the 
receptor. The Pythagorean Theorem, applied to the right triangles of Figure 3-6, tells
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LABORATORY PLOT

A
®  0  0  0 4 ^ 0  0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 © 0 0 0 0
__________________________

ROCKET PLOT

A A A A A A A A A  
A  A  A  A  A  A  
A A

A A A A A A A A 
A  A  A  A  A  A  A  

A A A

SUPER-ROCKET PLOT
FIGURE 3-5. Plots of the p a th  in space of a  reflectedflash of light as measured in three different 

fram es, showing event E, emission of the flash, a n d  event R , its reception after reflection. Squares, 
circles, and triangles represent latticeworks of recording clocks in laboratory, rocket, and super-rocket frames, 
respectively. The super-rocket frame moves to the right with respect to the rocket, and with such relative speed 
that the event of reception, R, occurs to the left of the event of emission, E, as measured in the super-rocket 
frame. The reflecting mirror is fixed in the rocket, hence appears to move from left to right in the laboratory 
and from right to left in the super-rocket.

FIGURE 3-6. Laboratory plot of 
the p a th  o f the light flash. The flash 
rises 3 meters while it moves to the 
right 4  meters. Then it falls 3 meters as 
it moves an additional 4  meters to the 
right. From the Pythagorean Theorem, 
the total length of the flash path equals 
3 meters plus 5 meters or 10 meters. 
Therefore 10 meters of light-travel 
time is the separation in time between 
emission event E and reception event R 
as measured in the laboratory frame.

'• R
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Between events: No absolute time, 
but invariant interval

us that each slanted leg of the trip has length 5 meters;

(3 meters)^ +  (4 meters)^ =  (5 meters)^

Thus the total length of the trip equals 10 meters, definitely longer than the length of 
the round trip, 6 meters, as observed in the rocket frame. Moreover, the light can cover 
that slanted and greater distance only at the standard rate of 1 meter of distance in 1 
meter of light-travel time. Therefore there is no escape from saying that the time of 
reception as recorded in the laboratory frame equals 10 meters. Thus there is a great 
variance between what is recorded in the two frames (Figure 3-5, Laboratory plot and 
Rocket plot); separation in time and in space between the emission £  of a pulse of light 
and its reception R after reflection.

In spite of the difference in space separation between events £  and R and the 
difference in time lapse between these events as measured in laboratory and rocket 
frames, there exists a measure of their separation that has the same value for both 
observers. This is the interval calculated from the difference of squares of time and 
space separations (Table 3-1). For both observers the interval has the value 6 meters. 
The interval is an invariant between free-float frames.

Two central results are to be seen here, one of variance, the other of invariance. We 
discover first that typically there is not and cannot be an absolute time difference 
between two events. The difference in time depends on our choice of the free-ffoat 
frame, which inertial frame we use to record events. There is no such thing as a simple 
concept of universal and absolute separation in time.

Second, despite variance between the laboratory frame and the rocket frame in the 
values recorded for time and space separations individually, the difference between the 
squares of those separations is identical, that is, invariant with respect to choice of 
reference frame. The difference of squares obtained in this way defines the square of 
the interval. The invariant interval itself has the value 6 meters in this example.

■ < ;;]T A B L E 3 fr^

RECKONING THE SPACETIME INTERVAL FROM 
ROCKET AND LABORATORY MEASUREMENTS

Rocket
measurements i

Laboratory
measurements

Time from emission 
of the flash to its reception 
Distance from the point of

6 meters DIFFERENT! -♦ 10 meters

emission of the flash to 
its point of reception

0 meters ■<- DIFFERENT! ^ 8 meters

Square of time 
Square distance and

36 (meters)^ 100 (meters)^

subttaa — 0 (meters)^ -64  (meters)^
Result of subtraction 36 (meters)^ 36 (meters)^
This is the square of what 6 meters 6 meters
measurement?

f

SAME SPACETIME
INTERVAL
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3.8 INVARIANCE OF THE INTERVAL FOR 
A ll  FREE-FLOAT FRAMES

super-rocket observer joins the agreement
The interval between two events has the same value for a//possible relative speeds of 
overlapping free-float frames. As an example of this claim, consider a third free-float 
frame moving at a different speed with respect to the laboratory frame— a speed 
different from that of the rocket frame.

We now measure the same events of emission and reception from a “super-rocket 
ftame’’ moving faster than the tocket (but not faster than light!) along the line 
between events E and R (Figure 3-5, Super-rocket plot). For convenience we arrange 
that the tefetence clock of this frame also coincides with refetence clocks of the other 
two frames at event E.

Events E and R occur at the same place in the rocket frame. Between these two 
events the supet-tocket moves to the right with tespect to the tocket. As a result, the 
supet-tocket observer records event R as occutring to the left of the emission event. 
How far to the left? That depends on the relative speed of the super-tocket frame.

The super-rocket is not super-size; rather it has super-speed. We adjust this 
super-speed so that the reception occurs 20 meters to the left of the emission for the 
super-rocket observer. Then the flash of light that rises vertically in the rocket must 
ttavel the same 3 meters upward in the super-rocket but also 10 meters to the left as it 
slants towatd the mirtor. Hence the distance it travels to the mitror in the supet-tocket 
ftame is the length of a hypotenuse, 10.44 meters;

(3 meters)^ +  (10 meters)^ =  9 meters^ + 1 0 0  meters^ = 1 0 9  meters^
=  (10.44 meters)^

It must travel another 10.44 meters as it slants downwatd and leftwatd to the event of 
reception. The total distance ttaveled equals 20.88 meters. It follows that the total 
time lapse between E and R equals 20.88 metets of light-travel time for the super­
rocket observer.

The speed of the supet-tocket is very high. As a result the space separation between 
emission and reception is very great. But then the time separation is also very great. 
Moreovet, the magnitude of the time sepatation is petfectly tailored to the size of the 
space separation. In consequence, the particulat quantity equal to the difference of 
their squares has the value (6 meters)^, no mattet how gteat the space separation and 
time separation individually may be. For the super-rocket ftame:

Super-rocket: Same interval 
between events

(20.88 meters)^ ~  (20 meters)^ 436 meters^ ~  400 meters^ — 36 meters^ 
(6 meters)^

In spite of the difference in space separation observed in the three frames (0 meters 
for the rocket, 8 meters for the laboratory, 20 meters for the super-rocket) and the 
difference in time separation (6 meters for the rocket, 10 meters for the laboratory, 
20.88 meters for the super-rocket), the intetval between the two events has the same 
value fot all three observers:

In general; (time sepatation)^ — (space separation)^ =  (interval)^

Rocket ftame: (6 metets)^ — (0 meters)^ =  (6 meters)^

Laboratory frame: (10 meters)^ — (8 meters)^ =  (6 meters)^

Super-rocket ftame: (20.88 meters)^ — (20 metets)^ =  (6 meters)^
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FIGURE 3-6 (repeated). Labora­
tory plot of the path of the light 
flash.

Invariance of interval from 
invariance of transverse dimension

The laboratory observer clocks the time between the flash and its reception as 10 
meters, in total disagreement with the 6 meters of timelike interval he figures between 
those two events. The observer in the super-rocket frame marks an even greater 
discrepancy, 20.88 meters of her time versus the 6 meters of timelike interval. Only 
for the rocket observer does clock time agree with interval. Why? Because only she sees 
reception at the same place as emission.

The invariance of the interval can be seen at a glance in Figure 3-6. The hypotenuse 
of the first right triangle has a length equal to half the time separation between E and 
R. Its base has a length equal to half the space separation. To say that (time 
separation)^ — (space separation)^ has a standard value, and consequently to state that 
(half the time separation)^ — (half the space separation)^ has a standard value, is 
simply to say that the altitude of this right triangle has a fixed magnitude (3 meters in 
the diagram) for rocket and all super-rocket frames, no matter how fast they move. 
And this altitude has a length equal to half the interval between these two events.

S A M P L E  P R O B L E M  3-2^
THE (C+ MESON

A beam of (unstable) mesons, traveling at a 
speed of t' =  0.868, passes through two counters 9 
meters apart. The particles suffer negligible loss of 
speed and energy in passing through the counters 
but give electrical pulses that can be counted. The

SOLUTION

first counter records 1000 pulses (1000 passing 
particles); the second records 250 counts (250 
passing particles). This decrease arises almost en­
tirely from decay of particles in flight. Determine 
the half-life of the meson in its own rest frame.

Unstable particles of different kinds decay at different rates. By definition, the half-life of 
unstable particles of a particular species measures the particle wristwatch time during 
which —  on the average — half of the particles decay. Half of the remaining particles 
decay in an additional time lapse equal to the same half-life, and so forth. In this case, one 
quarter of the particles remain after passage from counter to counter. Therefore the 
particles that survive experience the passage of two half-lives between counter and 
counter. We make the interval between those two passages, those two events, the center 
of our attention, because it has the same value in the laboratory frame where we do our 
measuring as it does in the free-float frame of the representative particle.
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The keystone of the argument establishing the invariance of the interval between 
two events for all free-float frames? The Principle of Relativity, according to which 
there is no difference in the laws of physics between one free-float frame and another. 
This principle showed here in two very different ways. First, it said that distances at 
right angles to the direction of relative motion are recorded as of equal magnitude in 
the laboratory frame and the rocket frame (Section 3.6). Otherwise one frame could be 
distinguished from the other as the one with the shorter perpendicular distances.

Second, the Principle of Relativity demanded that the speed of light be the same in 
the laboratory frame as in the rocket frame. The speed being the same, the fact that the 
light-travel path in the laboratory frame (the hypotenuse of two triangles) is longer 
than the simple round-trip path in the rocket frame (the altitudes of these two 
triangles: up 3 meters and down again) directly implies a longer time in the laboratory 
frame than in the rocket frame.

In brief, one elementary triangle in Figure 3-6 displays four great ideas that underlie 
all of special relarivity: invariance of perpendicular distance, invariance of the speed of 
light, dependence of space and time separations upon the frame of reference, and 
invariance of the interval.

Basis of invariance of interval: 
Principle of Relativity

3.9 SUMMARY
same laws for all; invariant interval for all

The Princip le o f R elativity says that the laws of physics are the same in every 
inertial (free-float) reference frame (Section 3.1). This simple principle has important 
consequences. Specifically:

(separation V  
in lab I 
time /

( separation /  separation V
in lab I =  I in moving- 1 

position /  Vparticle tim e/

9 meters of distance \

( separation \   ̂
in moving- I 

particle position /

/  zero separation \  ^
I in space (in

0.868 meters of distance 1 — lo f  distance j  ~  half-lives)^ — I particle frame) 
per meter of time / \ between those

two events /

=  ( 10.368 meters 
of light-travel time

Y  _  /  9 meters y  
/ \o f  distance/ (2 half-lives)^

A little arithmetic tells us that two half-lives total 5.15 meters of light-travel time. 
Consequently the half-life itself is 2.57 meters of time or (2.57 meters)/(3.00 X 10®
meters/second) =  8.5 X 1 0 ^  second or 8.5 nanoseconds.
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1.

2.

3.

4.

Two events that lie along the direction of relative motion between two frames 
cannot be simultaneous as measured in both frames (relativity o f sim ulta­
neity). (Section 3-4)
An object in high-speed motion is measured to be shorter along its direction of 
motion than its p ro p e r length, measured in its rest frame (Lorentz con­
traction). (Section 3.5)
The dimensions of moving objects transverse to their direction of relative 
motion are measured to be the same, whatever the relative speed (invariance 
o f transverse distances). (Section 3.6)
Two events with separation only transverse to the direction of relative motion 
and simultaneous in either frame are simultaneous in both. (Section 3.6)

FASTER THAN LIGHT?
We always want to go faster. Faster than what? Faster than anything has 
gone before. What is our greatest possible speed, according to the theory of 
relativity? The speed of light in a vacuum! How do we know that this is the 
greatest possible speed that we can travel? Many lines of evidence reach this 
conclusion. Rocket speed greater than the speed of light would lead to the 
destruction of the essential relation between cause and effect, a result ex­
plored in Special Topic: Lorentz Transformation (especially Box L-1) and in 
Chapter 6. In particular, we could find a  frame in which a faster-than-light 
object arrives before it starts! Moreover, in particle accelerators built over 
several decades we have spent hundreds of millions of dollars effectively 
trying to accelerate electrons and protons to the greatest possible speed —  
which by experiment never exceeds light speed.

The conclusion that no thing can mave faster than light arises also from the 
invariance of the interval. To see this, let a rocket emit two flashes of light a 
time t' apart as measured in the rocket frame. (Use a prime to distinguish 
rocket measurements from laboratory measurements.) In the rocket frame 
the two emissions occur at the same place: the separation x' between them 
equals zero. Let f and x be the corresponding separations in time and space 
as measured in the laboratary frame. Then the invariance of the interval tells 
us that the three quantities f', t, and x are related by the equation

(t')2 -  (x')2 =  I t V  -  (0)2 =  -  x2

whence

(t')2 = f2 -  x2 (3-1)

In the laboratory frame the rocket is moving with some speed; give this 
speed the symbol v. The distance x between emissions is just the distance that 
the rocket moves in time f in the laboratory frame. The relation between
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5. The spacetime interval between two events is invariant— it has the same 
value in laboratory and rocket frames (Sections 3-7 and 3.8):

L aboratory L aboratory

(interval)^ =  ( V - f  VVseparanon/ \separation/

R ocket R ocket

_  /  time y  _  /  space y  
Vseparation/ \separation/

6. In any free-float frame, no object moves with a speed greater than the speed of 
light (Box 3-3).

distance, time, and speed is

x  =  Vt (3-2)

Substitute this into equation (3-1) to obtain (t')̂  =  — (vt)^ =  [1 — v̂ ], or

f  =  t { ]  — v  ̂ )''2 (3-3)

Now, V is the speed of the rocket. How large can that speed be? Equation 
(3-3) makes sense for any rocket speed less than the speed of light, or when v 
has a  value less than one.

Suppose we try to force the rocket to move faster than the speed of light. If we 
should succeed, v would have a value greater than one. Then v̂  also would 
have a value greater than one. But in this case the expression 1 — v̂  would 
have a  negative value and its square root would have no physical meaning. 
In a formal mathematical sense, the rocket time f  would be an imaginary 
number for the case of rocket speed greater than the speed of light. But 
clocks do not read imaginary time; they read real time—-three hours, for 
example. Therefore a rocket speed greater than the speed of light leads to 
an impossible consequence.

Equation (3-3) does not forbid a rocket to go as close to the speed of light as 
we wish, as long as this speed remains less than the speed of light. For v very 
close to the speed of light, equation (3-3) tells us that the rocket time can be 
very much smaller than the laboratory time. Now suppose that emission of 
the first flash occurs when the rocket passes Earth on its outward trip to a 
distont star. Let emission of the second flash occur as the rocket a rriv es  at that 
distant star. No matter how long the laboratory time f between these two 
events, we can find a rocket speed, v, such that the rocket time t' is as small as 
we wish. This means that in principle we can go to any remote star in as short a 
rocket time as we want. In brief, although our speed is limited to less than the 
speed of light, the distance we can travel in a lifetime has no limitation. We 
can go anywhere! This result is explored further in Chapter 4.
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DOES A MOVING CLOCK R E A L L Y
“RUN SLOW”?

You k e e p  sa y in g , "T h e  tim e b e tw e e n  clock-ticks is sh o rte r  a s  M E A S U R E D  in the  
re st  fra m e o f  the c lo ck  than a s  M E A S U R E D  in a  fra m e in w hich  the c lo ck  is 
m o v in g ."  I am  in te re ste d  in rea lity , n ot so m e o n e 's  m ea su rem e n ts . Tell m e w h a t  
rea lly  h a p p e n s !

'  What is reality? You will have your own opinion and speculations. Here we 
pose two related scientific questions whose answers may help you in forming 
your opinion.

Are differences in clock rates really verified by experiment?
Different values of the time between two events as observed in different 
frames? Absolutely! Energetic particles slam into solid targets in accelerators 
all over the world, spraying forward newly created particles, some of which 
decay in very short times as measured in their rest frames. But these “ short­
lived” particles survive much longer in the laboratory frame as they streak 
from target to detector. In consequence, the detector receives a much larger 
fraction of the undecayed fast-moving particles than would be predicted 
from their decay times measured at rest. This result has been tested thou­
sands of times with many different kinds of particles. Such experiments 
carried out over decades lead to dependable, consistent, repeatable re­
sults. As far as we can tell, they are correct, true, and reliable and cannot 
effectively be denied. If that is what you personally mean by "real,” then 
these results are “what really happens.”

Does something about a clock really change when it moves, resulting in 
the observed change in tick rate?
Absolutely not! Here is why: Whether a free-float clock is at rest or in motion 
in the frame of the observer is controlled by the observer. You want the clock

REFERENCES
Introductory quote; A. Sommerfeld, Naturwissenschaftliche Rundschau, Volume 
1, pages 9 7 -1 0 0 , reprinted in Gesammelte Schriften (Vieweg, Braunschweig, 
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Galileo quote. Section 3.1; Galileo Galilei, Dialogue Concerning the Two Chief 
World Systems— Ptolemaic and Copemican, first published February 1632; the 
translation quoted here is by Stillman Drake (University of California Press, 
Berkeley, 1962), pages 186ff. Galileo’s writings, along with those of Dante, by 
reason of their strength and aptness, are treasures of human thought, studied 
today in Italy by secondary school students as part of a great literary heritage.

Einstein quote. Box 3-1; Albert Einstein, “On the Electrodynamics of Moving 
Bodies,’’ Annalen derPhysik, Volume 17, pages 8 9 1-921  (1905), translated by 
Arthur I. Miller in Albert Einstein’s Special Theory of Relativity (Addison- 
Wesley, Reading, Mass., 1981), page 392.
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to be at rest? Move along with it! Now do you wont the clock to move? Simply 
change your own velocity! This is true even when you and the clock are 
separated by the diameter of the solar system. The magnitude of the clock's 
steady velocity is entirely under your control. Therefore the time between its 
ticks as measured in your frame is determined by your actions. How can your 
change of motion affect the inner mechanism of a distant clock? It cannot and 
does not.

Every time you change your motion on Earth —  and even when you sit down, 
letting the direction of your velocity change as Earth rotates —  you change 
the rate at which the planets revolve around Sun, as measured in your frame. 
(You also change the shape of planetary orbits, contracting them along the 
direction of your motion relative to Sun.) Do you think this change on your 
velocity really affects the workings of the “clock” we call the solar system? If 
so, what about a person who sits down on the other side of Earth? That 
person moves in the opposite direction around the center of Earth, so the 
results are different from yours. Are each of you having a different effect on 
the solar system? And are there still different effects —  different solar-system 
clocks —  for observers who could in principle be scattered on other planets?

We conclude that free-float motion does not affect the structure or operation 
of clocks (or rods). If this is what you mean by reality, then there are rea lly  no 
such changes due to uniform motion.

Is there some unity behind these conflicting measurements of time and space? 
Yes! The interval: the proper time (wristwatch.time) between ticks of a clock as 
measured in a frame in which ticks occur at the same place, in which the clock 
is at rest. Proper time can also be calculated by all free-float observers, 
whatever their state of motion, and all agree on its value. Behind the confus­
ing clutter of conflicting measurements stands the simple, consistent, power­
ful view provided by spacetime.

ACKNOWLEDGMENTS
The idea for Box 3-1 was suggested by Kenneth L. Laws. Box 3-4 and the 
argument fot Section 3.6, Invariance of Transverse Dimension, is adapted from 
material by William A. Shurcliff, private communications. Sample Problem 3-2 
is adapted from A. P. French, Special Relativity (W. W. Norton, New York, 
1968), page 121,
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CHAPTER 3 EXERCISES

PRACTICE
3-1 relativity and swimming
The idea here is to illustrate how remarkable is the 
invariance of the speed of light (light speed same in all 
free-float frames) by contrasting it with the case of a 
swimmer making her way through water.

Light goes through space at 3 X 10® meters/sec- 
ond, and the swimmer goes through the water at 1 
meter/second. “But how can there otherwise be any 
difference?” one at first asks oneself.

For a light flash to go down the length of a 30- 
meter spaceship and back again takes

time =  (distance)/(speed)
=  2 X (30 meters)/(3 X 10® meters/second) 
=  2 X 10~^ second

as measured in the spaceship, regardless of whether 
the ship is stationary at the spaceport or is zooming 
past it at high speed.

Check how very different the story is for the swim­
mer plowing along at 1 meter/second with respect to 
the water.

a  How long does it take her to swim down the 
length of a 30-meter pool and back again?

b How long does it take her to swim from float A 
to float B and back again when the two floats, A  and 
B, are still 30 meters apart, but now are being towed 
through a lake at 1/3 meter/second? Discussion: 
When the swimmer is swimming in the same direc­
tion in which the floats are being towed, what is her 
speed relative to the floats? And how great is the 
distance she has to travel expressed in the “frame of 
reference” of the floats? So how long does it take to 
travel that leg of her trip? Then consider the same 
three questions for the return trip.

c Is it true that the total time from A to 6  and 
back again is independent of the reference system 
(“stationary” pool ends vs. moving floats)?

d Express in the cleanest, clearest, sharpest one- 
sentence formulation you can the difference between 
what happens for the swimmer and what happens for 
a light flash.

3-2 Einstein puzzler
When Albert Einstein was a boy of 16, he mulled 
over the following puzzler: A runner looks at herself 
in a mirror that she holds at arm’s length in front of

her. If she runs with nearly the speed of light, will she 
be able to see herself in the mirror? Analyze this 
question using the Principle of Relativity.

3-3 construction of clocks
For the measurement of time, we have made no dis­
tinction among spring clocks, quartz crystal clocks, 
biological clocks (aging), atomic clocks, radioactive 
clocks, and a clock in which the ticking element is a 
pulse of light bouncing back and forth between two 
mirrors (Figure 1-3). Let all these clocks be adjusted 
by the laboratory observer to run at the same rate 
when at rest in the laboratory. Now ler the clocks all 
be accelerated gently to a high speed in a rocket, 
which then turns off irs engines. Make a simple bur 
powerful argument that the free-float rocket observer 
will also measure these different clocks all to run ar 
the same rate as one another. Does it follow that the 
(common) clock rate of these clocks measuted by the 
rocket observer is rhe same as their (common) rate 
measured by rhe laboratory observer as they pass by in 
the rocket?

3-4 the Principle of Relativity
Two overlapping free-float frames are in uniform 
relative motion. On the following list, mark with a 
“yes” the quantities that must necessarily be the same 
as measured in the two frames. Mark with a “no” the 
quantities that are not necessarily the same as mea­
sured in the two frames.

a time it takes for light to go one meter of dis­
tance in a vacuum

b spacetime interval between two events 
c kinetic energy of an electron 
d value of the mass of the electron 
e value of the magnetic field at a given point 
f  distance between two events 
g structute of the DNA molecule 
h time rate of change of momentum of a neutron

3-5 many unpowered rockets
In rhe laboratory frame, event 1 occurs at x =  0 
light-years, / =  0 years. Event 2 occurs at x =  6 
light-years, /  =  10 years. In all rocket frames, event 1 
also occurs at the position 0 light-years and the time 0 
years. They- and z-coordinates of both events are zero 
in both frames.

a In rocker frame A, event 2 occurs ar rime t' =  
14 years. At what position x ' will event 2 occur in rhis 
frame?
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b In rocket frame B, event 2 occurs at position x"  
=  5 light-years. At what time f  will event 2 occur in 
this frame?

c How fast must rocket frame C move if events 1 
and 2 occur at the same place in this rocket frame?

d What is the time between events 1 and 2 in 
rocket frame C of part c?

3-6 down with relativity!
Mr. Van Dam is an intelligent and reasonable man 
with a knowledge of high school physics. He has the 
following objections to the theory of relativity. An­
swer each of Mr. Van Dam’s objections decisively — 
without criticizing him. If you wish, you may present 
a single connected account of how and why one is 
driven to relativity, in which these objections are all 
answered.

a ‘ ‘Observer A says that B’s clock goes slow, and 
observer B says that A’s clock goes slow. This is a 
logical contradiction. Therefore relativity should be 
abandoned.”

b ‘‘Observer A says that B’s meter sticks are 
contracted along their direction of relative motion, 
and observer B says that A’s meter sticks are con­
tracted. This is a logical contradiction. Therefore rela­
tivity should be abandoned.”

c ‘ ‘ Relativity does not even have a unique way to 
define space and time coordinates for the instanta­
neous position of an object. Laboratory and rocket 
observers typically record different coordinates for this 
position and time. Therefore anything relativity says 
about the velocity of the object (and hence about its 
motion) is without meaning.”

d ‘‘Relativity postulates that light travels with a 
standard speed regardless of the free-float frame from 
which its progress is measured. This posmlate is cer­
tainly wrong. Anybody with common sense knows 
that travel at high speed in the direction of a receding 
light pulse will decrease the speed with which the 
pulse recedes. Hence a flash of light cannot have the 
same speed for observers in relative motion. With this 
disproof of the basic postulate, all of relativity col­
lapses.”

e ‘‘There isn’t a single experimental test of the 
results of special relativity.”

f ‘‘Relativity offers no way to describe an event 
without coordinates —  and no way to speak about 
coordinates without referring to one or another par­
ticular reference frame. However, physical events 
have an existence independent of all choice of coordi­
nates and all choice of reference frame. Hence 
relativity— with its coordinates and reference frames 
—  cannot provide a valid description of these 
events.”

g ‘‘Relativityis preoccupied with how we observe 
things, not what is really happening. Hence it is not a 
scientific theory, since science deals with reality.”

PROBLEMS
3-7 space war
Two rockets of equal rest length are passing ‘‘head 
on” at relativistic speeds, as shown in the figure (left). 
Observer o has a gun in the tail of her rocket pointing 
perpendicular to the direction of relative motion

EXERCISE 3-7. U ff. Two rocket ships passing at high speed. Center: In the frame of o one expects a bullet 
fired when a coincides with a.' to miss the other ship. Right: In the frame of o' one expects a  bullet fired when 
a coincides with a! to hit the other ship.
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(center). She fires the gun when points a and a' 
coincide. In her frame the other rocket ship is Lorentz 
contracted. Therefore o expects her bullet to miss the 
other rocket. But in the frame of the other observer o' 
it is the rocket ship of o that is measured to be Lorentz 
contracted (right). Therefore when points a and a' 
coincide, observer o' should observe a hit.

Does the bullet actually hit or miss? Pinpoint the 
looseness of the language used to state the problem 
and the error in one figure. Show that your argument 
is consistent with the results of the Train Paradox 
(Section 3.4).

3-8 <£erenk< idialii
No particle has been observed to travel faster than the 
speed of light in a vacuum. However particles have 
been observed that travel in a material medium faster 
than the speed of light in that medium. When a 
charged particle moves through a medium faster than 
light moves in that medium, it radiates coherent light 
in a cone whose axis lies along the path of the particle. 
(Note the rough similarity to waves created by a 
motorboat speeding across calm water and the more 
exact similarity to the “cone of sonic boom” created 
by a supersonic aircraft.) This is called Cerenkov radi­
ation (Russian C is pronounced as “ch”). Let v be the 
speed of the particle in the medium and be the 
speed of light in the medium.

a From this information use the first figure to 
show that the half-angle 0 ,  of the light cone is given 
by the expression

cos 0  =

b Consider the plastic with the trade name Lu- 
cite, for which v̂ ^̂  ̂ =  2 /3 . What is the minimum 
velocity that a charged particle can have if it is to 
produce Cerenkov radiation in Lucite? W hat is the 
maximum angle 0  at which Cerenkov radiation can 
be produced in Lucite? Measurement of the angle 
provides a good way to measure the velocity of the 
particle.

C In water the speed of light is approximately 
flight “ 0.75.  Answer the questions of part b for the 
case of water. See the second figure for an application 
of Cerenkov radiation in water.

3-9 aberration of starlight
A star lies in a direction generally perpendicular to 
Earth’s direction of motion around Sun. Because of 
Earth’s motion, the star appears to an Earth observer 
to lie in a slightly different direction than it would

EXERCISE 3-8, first figure. Calculation of Cerenkov angle 0 .

EXERCISE 3-8, second figure. Use of Cerenkov radiation for 
indirect detection of neutrinos in the Deep Underwater Muon and 
Neutrino Detector (DUMAND) 3 0  kilometers off Keahole Point on 
the island of Hawaii. Neutrinos have no electric charge and their 
mass, i f  any, has so fa r  escaped detection (Box 8-1). Neutrinos 
interact extremely weakly with matter, passing through Earth with 
almost no collisions. Indeed, the DUMAND detector array selects 
for analysis only neutrinos that come upward through Earth. In this 
way Earth itself acts as a shield to eliminate all other cosmic-ray 
particles.

What are possible sources for these neutrinos? Theory predicts the 
emission of very high-energy {greater than 1 0 ’̂  electron-volt) neu­
trinos from matter plunging toward a black hole. Black holes may be 
the energy sources for extra-bright galactic nuclei and for quasars 
— small, distant, enigmatic objects shining with the light of 
hundreds of galaxies (Section 9.8). Information about conditions 
deep within these astronomical structures may be carried by neu­
trinos as they pierce Earth and travel upward through the DU­
MAND detector array.

In a rare event, a neutrino moving through the ocean slams into 
one of the quarks that make up a proton or a neutron in, say, an 
oxygen nucleus in the water, creating a burst of particles. All of 
these particles are quickly absorbed by the surrounding water except 
a stable negatively charged muon, 2 0 1  times the mass of the electron 
(thus sometimes called a “fa t electron”). This muon streaks through 
the water in the same direction as the neutrino that created it and at 
a speed greater than that of light in water, thus emitting Cerenkov 
radiation. The Cerenkov radiation is detected by photomultiplier 
tubes in an array anchored to the ocean floor.

Photomultipliers are strung along 9  vertical cables, 8  cables 
spaced around a circle 100 meters in diameter on the ocean floor, the 
ninth cable rising from the center of the circle. Each cable is 3 3 5  
meters long and holds 2 4  glass spheres positioned 10  meters apart on 
the top 2 3 0  meters of its length. There are no detectors on the bottom 
n o  meters, in order to avoid any cloud ofsediments from the bottom. 
Above the bottom, the water is so clear and modem photodetectors so 
sensitive that Cerenkov radiation can he detected from a muon that 
passes within 4 0  meters of a detector.

Photomultipliers in the glass spheres detect Cerenkov radiation 
from the passing muons, transmitting this signal through under­
water optical fibers to computers on the nearby island of Hawaii. 
The computers select for examination only those events in which (I )  
several optical sensors detect hursts that are (2) within 4 0  meters or 
so of a straight line, (3) spaced in time to show that the particle is 
moving at essentially the speed of light in a vacuum, and (4) from a 
particle moving upward through the water. A system of sonar bea­
cons and hydrophones tracks the locations of the photomultipliers as 
the strings sway with the slow ocean currents. As a result, the 
direction of motion of the original neutrino can be recorded to an 
accuracy of one degree.

The DUMAND facility is designed to create a new sky map of 
neutrino sources to supplement our knowledge of the heavens, so fa r 
obtained primarily from the electromagnetic spectrum (radio, infra­
red, optical, ultraviolet. X-ray, gamma ray).
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EXERCISE 3-9. Aberration of starlight. Not to scale.

appear to an observer at rest relative to Sun. This 
effect is called aberra tion . Using the diagram, find 
this apparent difference of direction.

a  Find a trigonometric expression for the aberra­
tion angle Xj/ shown in the figure.

b Evaluate your expression using the speed of 
Earth around Sun, =  30 kilometers/second.
Find the answer in radians and in seconds of arc. (One 
degree equals 60 minutes of arc; one minute equals 
60 seconds of arc.) This change in apparent position 
can be detected with sensitive equipment.

c The nonrelativistic answer to this problem —  
the answer using nonrelativistic physics— is tan Xj/ =  
*'Earth meters/metet). Do you think that the exper­
imental difference between relativistic and nonrela­
tivistic answers for stellar aberration observed from 
Earth can be the basis of a crucial experiment to decide 
between the correctness of the two theories?

Discussion: O f course we cannot climb off Earth 
and view the star from the Sun frame. But Earth 
reverses direction every six months (with respect to 
what?), so light from a “transverse star” viewed in, 
say, July will appear to be shifted through twice the 
aberration angle calculated in part b compared with 
the light from the same star in January. New ques­
tion: Since the background of stars behind the one 
under observation also shifts due to aberration, how 
can the effect be measured at all?

d A rocket in orbit around Earth suddenly 
changes its velocity from a very small fraction of the 
speed of light to t' =  0.5 with respect to Sun, moving 
in the same direction as Earth is moving around Sun. 
In what direction will the rocket astronaut now see the 
star of parts a and b?
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3-10 the expanding universe
a  A giant bomb explodes in otherwise empty 

space. W hat is the nature of the motion of one frag­
ment relative to another? And how can this relative 
motion be detected? Discussion: Imagine each frag­
ment equipped with a beacon that gives off flashes of 
light at regular, known intervals At of time as mea­
sured in its own frame of reference (proper time!). 
Knowing this interval between flashes, what method 
of detection can an observer on one fragment employ 
to determine the velocity v — relative to her —  of any 
other fragment? Assume that she uses, in making this 
determination, (1) the known proper time At be­
tween flashes and (2) the time between the
arrival of consecutive flashes at her position. (This is 
not equal to the time A/ in her frame between the 
emission of the two flashes from the receding emitter; 
see the figure.) Derive a formula for v in terms of 
proper time lapse At and A/^q,n„„. How will the 
measured recession velocity depend on the distance 
from one’s own fragment to the fragment at which 
one is looking? Hint: In any given time in any given 
frame, fragments evidently travel distances in that 
frame from the point of explosion that are in direct 
proportion to their velocities in that frame.

b How can observation of the light from stars be 
used to verify that the universe is expanding? Dis­
cussion: Atoms in hot stars give off light of different 
frequencies characteristic of these atoms (“spectral 
lines’’). The observed period of the light in each spec­
tral line from starlight can be measured on Earth. 
From the pattern of spectral lines the kind of atom 
emitting the light can be identified. The same kind of 
atom can then be excited in the laboratory to emit 
light while at rest and the ptoper period of the light in 
any spectral line can be measured. Use the results of

part a to describe how the observed period of light in 
one spectral line from starlight can be compared to the 
proper period of light in the same spectral line from 
atoms at rest in the laboratory to give the velocity of 
recession of the star that emits the light. This observed 
change in period due to the velocity of the source is 
called the Doppler shift. (For a more detailed treat­
ment of Doppler shift, see the exercises for Chapters 5 
and 8.) If the universe began in a gigantic explosion, 
how must the observed velocities of recession of dif­
ferent stars at different distances compare with one 
another? Slowing down during expansion —  by grav­
itational attraction or otherwise— is to be neglected 
here but is considered in more complete treatments.

c The brightest steadily shining objects in the 
heavens are called quasars, which stands for “quasi- 
stellar objects.’’ A single quasar emits more than 100 
times the light of our entire galaxy. One possible 
source of quasar energy is the gravitational energy 
released as material falls into a black hole (Section 
9.8). Because they are so bright, quasars can be ob­
served at great distances. As of 1991, the greatest 
observed quasar red shift A t  has the value
5.9. According to the theory of this exercise, what is 
the velocity of recession of this quasar, as a fraction of 
the speed of light?

3-11 law off addition off 
velocities

In a spacebus a bullet shoots forwatd with speed 3 /4  
that of light as measured by travelers in the bus. The 
spacebus moves forward with speed 3/ 4  light speed 
as measured by Earth observers. How fast does the 
bullet move as measured by Earth observers: 3 /4  +  
3 /4  =  6 /4  =  1.5 times the speed of light? No! Why 
not? Because (1) special relativity ptedicts that noth-

EXERCISE 3-10. Calculation of the time between arrival at observer of consecutive flashes from
receding emitter. Light moves one meter of distance in one meter of time, so lines showing motion of light are 
tilted at 43 °  from the vertical.
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ing can travel faster than light, and (2) hundreds of 
millions of dollars have been spent accelerating parti­
cles (“bullets”) to the fastest possible speed without 
anyone detecting a single particle that moves faster 
than light in a vacuum. Then where is the flaw in our 
addition of velocities? And what is the correct law of 
addition of velocities? These questions are answered in 
this exercise.

a First use Earth observers to record the mo­
tions of the spacebus (length L measured in the Earth 
frame, speed and the streaking bullet (speed 
'̂bullet)- The bullet starts at the back of the bus. To 

give it some competition, let a light flash (speed = 
1) race the bullet from the back of the bus toward 
the front. The light flash wins, of course, reaching 
the front of the bus in time f̂orward is also
equal to the distance that the light travels in this 
time. Show that this distance (measured in the Earth 
frame) equals the length of the bus plus the distance 
the bus travels in the same time;

frame and the bullet speed, call it (with a
prime), as measured in the spacebus frame. The times 
given in parts a, b, and c are of no use to this end. 
Worse, we already know that times between events 
are typically different as measured in the spacebus 
frame than times between the same events measured 
in the Earth frame. So get rid of these times! More­
over, the Lorentz-contracted length L of the spacebus 
itself as measured in the Earth frame will be different 
from its rest length measured in the bus frame (Sec­
tion 3.5). So get rid of L as well. Equations (1), (2), 
and (3) can be treated as three equations in the three 
unknowns /fô ard- Aackward> ^nd L. Substitute equa­
tions for the times (1) and (2) into equation (3). 
Lucky us: The symbol L cancels out of the result. 
Show that this result can be written

/  =
(1 ~  ^̂ buUet) (1 +  y,,i) 

(1 +  i'buUet) (1 “  «"rel)
(4 )

^forward ^  ^rel ^forward ^forward 1
( 1)

b In order to rub in its advantage over the bul­
let, the light flash reflects from the front of the bus 
and moves backward until, after an additional time 
b̂ackward! tejoios the forward-plodding bullet. This 

meeting takes place next to the seat occupied by 
Fred, who sits a distance fL  behind the front of the 
bus, where /  is a fraction of the bus length L. Show 
that for this leg of the trip the Earth-measured dis­
tance /backward traveled by the light flash can also be 
expressed as

^backward ^rel ^backward

fL
^backward

\ V,rel

C The light flash has moved forward and then 
backward with respect to Earth. What is the net 
forwatd distance coveted by the light flash at the 
instant it tejoins the bullet? Equate this with the for­
ward distance moved by the bullet (at speed t̂ buU«) to 
obtain the equation

/'bulletf^forward ^backward * forward

or

( 1  ^bullet^ ^backward ^ ^ ^bullet) ^forward

e Now repeat the development of parts a 
through d  for the spacebus frame, with respect to 
which the spacebus has its rest length L' and the 
bullet has speed t̂ b̂uu« (both with primes). Show that 
the result is:

/  =
(  f  bullet)

(1 +  /''buUet)
(5 )

Discussion: Instead of working hard, work 
smart! Why not use the old equations (1) through (4) 
for the spacebus frame? Because there is no relative 
velocity in the spacebus frame; the spacebus is at 
rest in its own frame! No problem: Set =  0 in 
equation (4), replace «̂buU« by /̂ b̂uoiet ^nd obtain equa­
tion (5) directly from equation (4). If this is too big a 
step, carry out the derivation from the beginning in 
the spacebus frame.

f  Do the two fractions/in equations (4) and (5) 
have the same value? In equation (4) the number /  
locates Fred’s seat in the bus as a fraction of the total 
length of the bus in the Earth frame. In equation (5) 
the number/locates Fred’s seat in the bus as a fraction 
of the total length of the bus in the bus frame. But this 
fraction must be the same: Fred cannot be halfway 
back in the Earth frame and, say, three quarters of the 
way back in the spacebus frame. Equate the two 
expressions for/given in equations (4) and (5) and 
solve for to obtain the Law of Addition of 
Velocities:

d What are we after? We want a relation be­
tween the bullet speed t'buUet measured in the Earth / ’bullet

bullet /'rel

1 +
( 6)

bullet ^rel
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g Explore some consequences of the Law of Ad­
dition of Velocities.

(1) An express bus on Earth moves at 108 
kilometers/hour (approximately 67 miles/ 
hour or 30 meters per second). A bullet moves 
forward with speed 600 meters/second with 
respect to the bus. What are the values of 
and t'̂ buUet in meters/meter? What is the value 
of their product in the denominator of equa­
tion (6)? Does this product of speeds increase 
the value of the denominator significantly over 
the value unity? Therefore what approximate 
form does equation (6) take for everyday 
speeds? Is this the form you would expect from 
your experience?

(2) Analyze the example that began this exercise: 
Speed of bullet with respect to spacebus 
t̂ 'buUet ~  3/4; speed of spacebus with respect
to Earth : re l 3/4. What is the speed of the
bullet measured by Earth observers?

(3) Why stop with bullets that saunter along at 
less than the speed of light? Let the bullet itself 
be a flash of light. Then the bullet speed as
measuted in the bus is r'̂ buUet “  1 ■ For “"rel
3 /4 , with what speed does this light flash 
move as measured in the Earth frame? Is this 
what you expect from the Principle of Relativ­
ity?

(4) Suppose a light flash is launched from the 
front of the bus directed toward the back 
(j'̂ bouet ~  ~  What is the velocity of this 
light flash measured in the Earth frame? Is this 
what you expect from the Principle of Relativ­
ity?

Reference: N . David Mermin, American Journal of Physics, Volume 
51, pages 1 1 3 0-1131  (1983).

3-12 Michelson—Morley 
experiment

a  An airplane moves with air speed c (not the 
speed of light) from point A  to point B on Earth. A 
stiff wind of speed p is blowing from B toward A. (In 
this exercise only, the symbol v stands for velocity in 
conventional units, for example meters/second.) 
Show that the time for a round trip from A to B and 
back to A  under these circumstances is greater by a 
factor 1/(1 — v'^/c^) than the corresponding round 
trip time in still air. Paradox: The wind helps on one 
leg of the flight as well as hinders on the other. Why, 
therefore, is the round-trip time not the same in the 
presence of wind as in still air? Give a simple physical 
reason for this difference. What happens when the 
wind speed is nearly equal to the speed of the airplane?

b The same airplane now makes a round trip 
between A  and C. The distance between A  and C is 
the same as the distance from A  to 6, but the line from 
A to C is perpendiculat to the line from A to 6, so that 
in moving between A and C the plane flies across the 
wind. Show that the round-trip time between A and 
C under these circumstances is greater by a factor 
1/(1 — rd/f2)i/2 than the corresponding round-trip 
time in still air.

c Two airplanes with the same air speed c start 
from A at the same time. One travels from A to B and 
back to A, flying first against and then with the wind 
(wind speed v). The other travels from A to C and 
back to A, flying across the wind. Which one will 
arrive home first, and what will be the difference in 
their arrival times? Using the first two tetms of the 
binomial theorem.

(1 4-z)” ~  1 -f nz for |z |«  1

show that if v «  c, then an approximate expression 
for this time difference is A/ ~  {L/2c){v/cY, where L 
is the round-trip distance between A and B (and 
between A and C).

d The South Pole Air Station is the supply depot 
for research huts on a circle of 300-kilometer radius 
centered on the air station. Every Monday many sup­
ply planes start simultaneously from the station and 
fly radially in all directions at the same altitude. Each 
plane drops supplies and mail to one of the research 
huts and flies directly home. A Fussbudget with a 
stopwatch stands on the hill overlooking the air sta­
tion. She notices that the planes do not all return at the 
same time. This discrepancy perplexes her because she 
knows from careful measurement that (1) the dis­
tance from the air station to every research hut is the 
same, (2) every plane flies with the same air speed as 
every other plane —  300 kilom eters/hour —  and (3) 
every plane travels in a straight line over the ground 
from station to hut and back. The Fussbudget finally 
decides that the discrepancy is due to the wind at the 
high altitude at which the planes fly. With her stop­
watch she measures the time from the return of the 
first plane to the return of the last plane to be 4 
seconds. What is the wind speed at the altitude where 
the planes fly? What can the Fussbudget say about 
the direction of this wind?

e In their famous experiment Michelson and 
Morley attempted to detect the so-called e th er d rift 
—  the motion of Earth through the “ether,” with 
respect to which light was supposed to have the ve­
locity c. They compared the round-trip times for light 
to travel equal distances parallel and perpendicular to 
the direction of motion of Earth around Sun. They 
reflected the light back and forth between nearly



EXERCISE 3-12 MICHELSON - MORLEY EXPERIMENT 8 5

parallel mirrors. (This would correspond to part c if 
each airplane made repeated round trips.) By this 
means they were able to use a total round-trip length 
of 22 meters for each path. If the “ether” is at rest 
with respect to Sun, and if Earth moves at 30 X 10  ̂
meters/second in its path around Sun, what is the 
approximate difference in time of return between 
light flashes that are emitted simultaneously and 
travel along the two perpendicular paths? Even with 
the instruments of today, the difference predicted by 
the ether-drift hypothesis would be too small to mea­
sure directly, and the following method was used 
instead.

f  The original Michelson -  Morley interferome­
ter is diagrammed in the figure. Nearly monochro­
matic light (light of a single frequency) enters through 
the lens at a. Some of the light is reflected by the 
half-silvered mirror at b and the rest of the light 
continues toward d. Both beams are reflected back 
and forth until they reach mirrors e and e-̂  respectively, 
where each beam is reflected back on itself and re­

traces its path to mirror b. At mirror b parts of each 
beam combine to enter telescope /  together. The 
transparent piece of glass at c, of the same dimensions 
as the half-silvered mirror b, is inserted so that both 
beams pass the same number of times (three times) 
through this thickness of glass on their way to tele­
scope/. Suppose that the perpendicular path lengths 
are exactly equal and the instrument is at rest with 
respect to the ether. Then monochromatic light from 
the two paths that leave mirror h in some relative 
phase will return to mirror b in the same phase. Under 
these circumstances the waves entering telescope/will 
add crest to crest and the image in this telescope will 
be bright. On the other hand, if one of the beams has 
been delayed a time corresponding to one half period 
of the light, then it will arrive at mitror b one half 
period later and the waves entering the telescope will 
cancel (crest to trough), so the image in the telescope 
will be dark. If one beam is retarded a time corre­
sponding to one whole petiod, the telescope image 
will be bright, and so forth. What time corresponds to

EXERCISE 3 -12 . M ichelson -  Morley interferometer mounted on a  ro ta ting  marble slab.
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one period of the light? Michelson and Morley used 
sodium light of wavelength 589 nanometets (one 
nanometer is equal to 10“  ̂metet). Use the equations 
fX  =  c and / =  1 / T  that relate frequenq^/, period T, 
wavelength A, and speed c of an electromagnetic 
wave. Show that one period of sodium light corre­
sponds to about 2 X 10“ ' ’ seconds.

Now thete is no way to “turn o ff’ the alleged ether 
drift, adjust the apparatus, and then turn the alleged 
ether drift on again. Instead of this, Michelson and 
Morley floated their interferometer in a pool of mer­
cury and rotated it slowly about its center like a 
phonograph record while observing the image in the 
telescope (see the figure). In this way if light is delayed 
on either path when the instrument is oriented in a 
cettain direction, light on the other path will be de­
layed by the same amount of time when the insttu- 
ment has rotated 90 degrees. Hence the total change 
in delay time between the two paths observed as the 
interferometer rotates should be twice the difference 
calculated using the expression derived in part c. By 
refinements of this method Michelson and Morley 
were able to show that the time change between the 
two paths as the instrument rotated corresponded to 
less than one one-hundredth of the shift from one 
dark image in the telescope to the next dark image. 
Show that this result implies that the motion of the 
ethet at the surface of Earth —  if it exists at all — is 
less than one sixth of the speed of Earth in its orbit. In 
order to eliminate the possibility that the ether was 
flowing pasr Sun at the same rate as Earth was moving 
its orbit, they tepeated the experiment at intervals of 
three months, always with negative results.

g Discussion question; Does the Michelson-  
Morley experiment, by itself, disprove the theory that 
light is propagated through an ether? Can the ether 
theory be modified to agree with the results of this 
experiment? How? W h a t further experiment can be 
used to test the modified theory?
Reference: A. A. Michelson and E. W . Morley, American Journal of 
Science, Volume 134, pages 3 3 3 -3 4 5  (1887).

3-13 the Kennedy—Thorndike 
experiment

Note: Part d of this exercise uses elementary calculus.
The Michelson -  Morley experiment was designed 

to detect any motion of Earth relative to a hypotheti­
cal fluid —  the ether— a medium in which light was 
supposed to move with characteristic speed c. No 
such relative motion of earth and ether was detected. 
Partly as a result of this experiment the concept of 
ether has since been discarded. In the modern view, 
light requires no medium for its transmission. What 
significance i does the negative result of the

Michelson -  Morley experiment have for us who do 
not believe in the ether theory of light propagation? 
Simply this: (1) The round-trip speed of light mea­
sured on earth is the same in every direction —  the 
speed of light is isotropic. (2) The speed of light is 
isotropic not only when Earth moves in one direction 
around Sun in, say, January (call Earth with this 
motion the “laboratory frame”), but also when Earth 
moves in the opposite direction around Sun six 
months later, in July (call Earth with this motion the 
“rocket frame”). (3) The generalization of this result 
to any pair of inertial frames in relative motion is 
contained in the statement. The round-trip speed of 
light is isotropic both in the laboratory frame and in 
the rocket frame. This result leaves an important 
question unanswered: Does the round-ttip speed of 
light— which is isotropic in both laboratory and 
rocket frames —  also have the same numerical value 
in laboratory and rocket frames? The assumption that 
this speed has the same numerical value in both 
frames played a central role in demonstrating the 
invariance of the interval (Section 3.7). But is this 
assumption valid?

a An experiment to test the assumption of the 
equality of the round-trip speed of light in two inettial 
frames in relative motion was conducted in 1932 by 
Roy J. Kennedy and Edward M. Thorndike. The 
experiment uses an interferometer with atms of un­
equal length (see the figute). Assume that one arm of 
the interferometer is A/ longer than the other arm. 
Show that a flash of light entering the apparatus will 
take a time 2A//c longer to complete the round trip 
along the longer arm than along the shotter arm. The 
difference in length A/ used by Kennedy and Thorn­
dike was approximately 16 centimeters. What is the 
approximate difference in time for the round trip of a 
light flash along the alternative paths?

b Instead of a pulse of light, Kennedy and 
Thorndike used continuous monochromatic light of 
period T =  1.820 X 10“ ' ’ seconds (A =  546.1 
nanometers =  546.1 X 10“  ̂meters) from a mercury 
source. Light that ttaverses the longer arm of the 
interferometer will return approximately how many 
periods n later than light that traverses the shortet 
atm? If in the actual experiment the number of pe­
riods is an integer, the reunited light from the two 
arms will add (crest-to-crest) and the field of view 
seen through the telescope will be bright. In contrast, 
if in the actual experiment the number of periods is a 
half-integer, the reunited light from the two arms will 
cancel (crest-to-trough) and the field of view of the 
telescope will be dark.

c Earth continues on its path around Sun. Six 
months later Earth has reversed the direction of its 
velocity relative to the fixed stars. In this new frame of



EXERCISE 3-13 THE KENNEDY - THORNDIKE EXPERIMENT 8 7

EXERCISE 3-13. Schematic diagram of apparatus used for the 
Kennedy- 'Vhomdike experiment. Parts of the interferometer have 
been labeled with letters corresponding to those used in describing 
the Michelson-Morley interferometer (Exercise 3-12). The experi­
menters went to great lengths to insure the optical and mechanical 
stability of their apparatus. The interferometer is mounted on a 
plate of quartz, which changes dimension very little when tempera­
ture changes. The interferometer is enclosed in a vacuum jacket so 
that changes in atmospheric pressure will not alter the effective 
optical path length of the interferometer arms (slightly different 
speed of light at different atmospheric pressure). The inner vacuum

jacket is surrounded by an outer water jacket in which the water is 
kept a t a temperature that varies less than ± 0 .0 0 1  degrees Celsius. 
The entire apparatus shown in the figure is enclosed in a small 
darkroom (not shown) maintained at a temperature constant within 
a few hundredths of a degree. The small darkroom is in turn enclosed 
in a larger darkroom whose temperature is constant within a  few 
tenths of a degree. The overall size of the apparatus can he judged 
from the fact that the difference in length of the two arms of the 
interferometer (length eb compared with length ejb) is 16 
centimeters.

reference will the round-trip speed of light have the 
same numerical value c as in the original frame of 
reference? One can rewrite the answer to part b for the 
original frame of reference in the form

f  =  (2 / « ) (A / / 7 )

where A/ is the difference in length between the two 
interferometer arms, T is the time for one period of 
the atomic light source, and n is the number of periods 
that elapse between the return of the light on the 
shorter path and the return of the light on the longer 
path. Suppose that as Earth orbits Sun no shift is 
observed in the telescope field of view from, say, light 
toward dark. This means that n is observed to be 
constant. What would this hypothetical result tell 
about the numerical value c of the speed of light?

Point out the standards of distance and time used in 
determining this result, as they appear in the equa­
tion. Quartz has the greatest stability of dimension of 
any known material. Atomic time standards have 
proved to be the most dependable earth-bound time­
keeping mechanisms.

d In order to carry our the experiment outlined in 
the preceding paragraphs, Kennedy and Thorndike 
would have had to keep their interferometer operat­
ing perfectly for half a year while continuously ob­
serving the field of view through the telescope. Unin­
terrupted operation for so long a time was not 
feasible. The actual durations of their observations 
varied from eight days to a month. There were several 
such periods of observation at three-month time sep­
arations. From the data obtained in these periods, 
Kennedy and Thorndike were able to estimate that
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over a single six-month observation the number of 
periods n of relative delay would vary by less than the 
fraction 3/1000 of one period. Take the differential 
of the equation in part c to find the largest fractional 
change dc/c of the round-trip speed of light between 
the two frames consistent with this estimated change 
in n (frame 1 — the “labotatory” frame —  and frame 
2 —  the “rocket” frame— being in the present anal­
ysis Earth itself at two different times of year, with a 
relative velocity twice the speed of Earth in its orbit: 
2 X 30 kilometets/second).

H istorical note: At the time of the Michelson- 
Morley experiment in 1887, no one was ready for the 
idea that physics —  including the speed of light— is 
the same in every inertial frame of reference. Accord­
ing to today’s standard Einstein interptetation it 
seems obvious that both the Michelson-Motley and 
the Kennedy-Thorndike experiments should give 
null results. However, when Kennedy and Thorndike 
made their measurements in 1932, two alternatives 
to the Einstein theory were open to consideration 
(designated here as theory A and theory B). Both A 
and B assumed the old idea of an absolute space, or 
“ether,” in which light has the speed c. Both A and B 
explained the zero fringe shift in the Michelson-  
Motley experiment by saying that all matter that 
moves at a velocity v (expressed as a fraction of light- 
speed) relative to “absolute space” undergoes a 
shrinkage of its space dimensions in the direction of 
motion to a new length equal to (1 — times the 
old length (“Lorentz-FitzGerald contraction hypoth­
esis”). The two theories differed as to the effect of 
“motion through absolute space” on the running rate 
of a clock. Theory A said. No effect. Theory B said 
that a standard seconds clock moving through abso­
lute space at velocity v has a time between ticks of 
(1 “  seconds. In theory B the ratio A //T in  the 
equation in part b  will not be affected by the velocity 
of the clock, and the Kennedy-Thorndike experi­
ment will give a null result, as observed (“compli­
cated explanation for simple effect”). In theory A the 
ratio A //T  in the equation will be multiplied by the 
factor (1 ~  at a time of year when the “velocity
of Earth relative to absolute space” is v-̂  and multi­
plied by (1 — at a time of year when this
velocity is Thus the fringes should shift from one 
time of year (v^ =  t'otbitai *̂Sun) to anorher time of 
year (v^ =  “  t'sun) unless by accident Sun
happened to have “zero velocity relative to absolute 
space” — an accident judged so unlikely as not to 
provide an acceptable explanation of the observed 
null effect. Thus the Kennedy-Thorndike experi­
ment ruled out theory A (length contraction alone) 
but allowed theory B (length contraction plus time 
contraction) —  and also allowed the much simpler

Einstein theory of equivalence of all inertial reference 
frames.

The “sensitivity” of the Kennedy-Thorndike ex­
periment depends on the theory under considerarion. 
In the context of theory A the observations set an 
upper limit of about 15 kilometers/second to the 
“speed of Sun through absolute space” (sensitivity 
reported in the Kennedy-Thorndike paper). In the 
context of Einstein’s theory the observations say that 
the round-trip speed of light has the same numerical 
magnitude— within an error of about 3 meters/ 
second — in inertial frames of reference having a rela- 
rive velocity of 60 kilometers/second.
Reference: R. J . Kennedy and E. M. Thorndike, Physical Review, 
Volume 42, pages 4 0 0 -4 1 8  (1932).

3-14 things that move faster 
than light

Can “things” or “messages” move fasrer than light? 
Does relativity really say “No” to this possibility? 
Explore these questions further using the following 
examples.

a T he Scissors Paradox. A very long straight 
rod, inclined at an angle d  to the x-axis, moves down­
ward with uniform speed as shown in the figure. 
Eind rhe speed of the point of intersection A  of the 
lower edge of the stick with the x-axis. Can this speed 
be greater than the speed of light? If so, for what 
values of the angle 0  and does this occur? Can the 
motion of intersection point A  be used to transmit a 
message faster rhan lighr from someone at the origin 
to someone far out on the x-axis?

b Transm ission o f a H am m er Pulse. Sup­
pose the same rod is inirially at test in the laboratory 
with the point of intersection initially at the origin. 
The region of the rod centered at the origin is struck 
sharply with the downward blow of a hammer. The 
point of intersection moves to the right. Can this 
motion of the point of intersection be used to transmit 
a message faster than the speed of light?

c Searchlight Messenger? A very powerful 
searchlight is rotated rapidly in such a way that its 
beam sweeps out a flat plane. Observers A  and B are 
at rest on the plane and each the same distance from 
the searchlight but not near each other. How far from 
the searchlight must A  and B be in order that the 
searchlight beam will sweep from A to B faster than a 
light signal could travel from A  to BP Before they 
took their positions, the two observers were given the 
following instruction:

To A: “When you see the searchlight beam, fire a bullet 
at B.”
To B: “When you see the searchlight beam, duck be­
cause A has fired a bullet at you.”
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EXERCISE 3-14. Can the point of intersection A move with a speed greater than the speed of light?

Under these circumstances, has a warning message 
traveled from A to B with a speed faster than that of 
light?

d Oscilloscope W riting  Speed. The manu­
facturer of an oscilloscope claims a writing speed (the 
speed with which the bright spot moves across the 
screen) in excess of the speed of light. Is this possible?

3-15 four limes the speed of 
light?

We look westward across the United States and see 
the rocket approaching us at four times the speed of 
light.

How can this be, since nothing moves faster 
than light?

C. We did not say the rocket moves faster 
than light; we said only that we see it 
moving faster than light.

Here is what happens: The rocket streaks under the 
Golden Gate Bridge in San Francisco, emitting a flash 
of light that illuminates the rocket, the bridge, and 
the surroundings. At time A? later the rocket threads 
the Gateway Arch in St. Louis that commemorates 
the starting point for covered wagons. The arch and 
the Mississippi riverfront are flooded by a second flash 
of light. The top figure is a visual summary of mea­

surements from our continenr-spanning latticework 
of clocks taken at this moment.

Now the rocket continues toward us as we stand in 
New York City. The center figure summarizes data 
taken as the first flash is about to enter our eye. Flash 
1 shows us the rocket passing under the Golden Gate 
Bridge. An instant later flash 2 shows us the rocket 
passing through the Gateway Arch.

a  Answer the following questions using symbols 
from the first two figures. The images carried by the 
two flashes show the rocket how far apart in space? 
What is the time lapse between our reception of these 
two images? Therefore, what is the apparent speed of 
the approaching rocket we see? For what speed v of 
the rocket does the apparent speed of approach equal 
four times the speed of light? For what rocket speed 
do we see the approaching rocket to be moving at 99 
times the speed of light?

b Our friend in San Francisco is deeply disap­
pointed. Looking eastward, she sees the retreating 
rocket traveling at less than half the speed of light 
(bottom figure). She wails, “Which one of us is 
wrong?” “Neither one.” we reply. “No matter how 
high rhe speed v of the rocket, you will never see ir 
moving directly away from you at a speed greater than 
half the speed of light.”

Use the bottom figure to derive an expression for 
the apparent speed of recession of the rocket. When 
we in New York see the rocket approaching at four 
times the speed of light, with what speed does our San 
Francisco friend see it moving away from her? When 
we see a faster rocket approaching at 99 times the 
speed of light, what speed of recession does she be­
hold?
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SAN FRANCISCO ST. LOUIS
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flash 2
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flash

2
-At- -vAt-

NEW YORK

emit
flash

3

ROCKET AT NEW YORK
EXERCISE 3-15. Top: Rocket headed east, shown at the instant it 
passes under the Gateway Arch in St. Louis and emits flash 2 . The 
rocket is chasing flash 1, emitted earlier as it passed under the 
Golden Gate Bridge in San Francisco. Center: The two image­
carrying flashes are close together, so they enter the eye in rapid 
succession. This gives the viewer the visual impression that the 
rocket moved from San Francisco to St. Louis in a very short time.

Bottom: Rocket headed east, shown at the instant it approaches the 
Empire State Building in New York City and emits flash 3. When 
the rocket moves away from the viewer, the distance of rocket travel 
is added to the separation between flashes. This increases the ap­
parent time between flashes, giving the viewer the impression that 
the rocket moved from St. Louis to New York at less than one half 
light-speed.

3-16 superluminal expansion 
off quasar 3C273?

The most powerful sources of energy we know or 
conceive or see in all the universe are so-called quasi- 
stellar objects, or quasars, starlike sources of light 
located billions of light-years away. Despite being far

smaller than any galaxy, the typical quasar manages 
to put out more than 100 times as much energy as our 
own Milky Way, with its hundred billion stars. Qua­
sars, unsurpassed in brilliance and remoteness, we 
count today as lighthouses of the heavens.

One of the major problems associated with quasars 
is that some are composed of two or more components
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EXERCISE 3-16, first figure. Left: Bright “knot” of plasma ejected from a quasar at high speedy emits a 
first flash of light toward Earth. Right: The knot emits a second light flash toward Earth a  time At later. 
This time At is measured locally near the knot using the Earth-linked latticework of rods and clocks (har! 
harl).

that appear to be separating from each other with 
relative velocity greater than the speed of light (“su­
perluminal” velocity). One theory that helps explain 
this effect pictures the quasar as a core that ejects a jet 
of plasma at relativistic speed. Disturbances or insta­
bilities in such a jet appear as discrete “knots” of 
plasma. The motion and light emission from a knot 
may account for its apparent greater-than-light speed, 
as shown using the first figure.

a The first figure shows two Earth-directed light 
flashes emitted from the streaking knot. The time 
between emissions is A/ as measured locally near the 
knot using the Earth-linked latticework of rods and 
clocks. Of course the clock readings on this portion of 
the Earth-linked latticework are not available to us on 
Earth; therefore we cannor measure A/ directly. 
Rather, we see the time separation between the atriv- 
als of the two flashes at Earth. From the figure, show 
that this Earth-seen time separation At^^ is given by 
the expression

=  A /(l V COS Q)

b We have another disability in viewing the knot 
from Earth. We do not see the motion of the knot 
toward us, only the apparent motion of the knot 
across our field of view. Find an expression for this 
transverse motion (call it between emissions of
the two light flashes in terms of Ar.

c Now calculate the speed of the rightward 
motion of the knot as seen on Earth. Show that the 
result is

.X -------
V sin e

1 V cos e
d What is the value of when the knot is 

emitted in the direction exactly toward Earth? when it 
is emitted perpendicular to this ditection? Find an 
expression that gives the range of angles Q for which 

is greater than the speed of light. For 0 =  45 
degrees, what is the range of knot speeds v such that 

is greater than the speed of light? 
e If you know calculus, find an expression for the 

angle at which has its maximum value for a 
given knot speed v. Show that this angle satisfies the 
equation cos B ,^  =  v. Whether or not you derive this 
result, use it to show that the maximum apparent 
transverse speed is seen as

t/'*^seen, max (1 -^4)1/2

f  What is this maximum transverse speed seen 
on Earth when v =  0.99?

g The second figure shows the pattern of radio 
emission from the quasar 3C273. The decreased pe-
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EXERCISE 3 -1 6 , second figure. Contour lines o f  radio emission 
from  the quasar 5 C 2 7  3 show ing a  bright “k n o t"  o f  p lasm a appar­
ently moving aw a y  from  i t  a t  a  speed greater than  the speed o f  light. 
The tim e o f  each image is g iven  as calendar year a n d  decim al 

fra c tio n . H orizon ta l scale d iv isions are in  u n its  o f  2  m illi arc-se­
conds. (1 m illi arc-second =  lO r ^ jj^ O O  degree =  4 .8 5  X  1G~^ 
rad ian)

riod of radiation from this source (Exercise 3-10) 
shows that it is approximately 2.6 X 10^ light-years 
from Earth. A secondary source is apparently moving 
away from the central quasar. Take your own mea­
surements on the figure. Combine this with data from 
the figure caption to show that the apparent speed of 
separation is greater than 9 times the speed of light.

Note: As of 1990, apparent greater-than-light- 
speed (“superluminal”) motion has been observed in 
approximately 25 different sources.
References: Analysis and first figure adapted from Denise C. Ga- 
buzda, American Journal o f  Physics, Volume 55, pages 2 1 4 -2 1 5  
(1987). Second figure and data taken from T. J. Pearson, S. C. 
Unwin, M. H. Cohen, R. P. Linfield, A. C. S. Readhead, G . A, 
Seielstad, R. S. Simon, and R. C. Walker, Nature, Volume 290, 
pages 3 6 5 -3 6 8  (2 April 1981),

3-17 contraction or rotation?
A cube at rest in the rocket frame has an edge of 
length 1 meter in that frame. In the laboratory frame 
the cube is Lorentz contracted in the direction of 
motion, as shown in the figure. Determine this Lor­
entz contraction, for example, from locations of four 
clocks at rest and synchronized in the laboratory lat­
tice with which the four corners of the cube, E, F, G, 
H, coincide when all four clocks read the same time. 
This latticework measurement eliminates time lags in 
the travel of light from different corners of the cube.

Now for a different observing procedure! Stand in 
the laboratory frame and look at the cube with one eye 
as the cube passes overhead. What one sees at any 
time is light that enters the eye at that time, even if it 
left the different corners of the cube at different times. 
Hence, what one sees visually may not be the same as 
what one observes using a latticework of clocks. If the 
cube is viewed from the bottom then the distance GO 
is equal to the distance HO, so light that leaves G and 
H  simultaneously will arrive ar 0  simultaneously. 
Hence, when one sees the cube to be overhead one will 
see the Lorentz contraction of the bottom edge.

a Light from E that arrives at 0  simultaneously 
with light from G will have to leave E earlier rhan 
light from G left G. How much earlier? How far has 
the cube moved in this time? What is the value of the 
distance x in the right top figure?

b Suppose the eye interprets the projection in the 
figures as a rotation of a cube that is not Lorentz 
contracted. Find an expression for the angle of appar­
ent rotation (f> of this uncontracted cube. Interpret 
this expression for the two limiting cases of cube speed 
in the laboratory frame: p —* 0 and p —* l .

C Discussion question: Is the word “really” 
an appropriate word in the following quotations?
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E G

(1 -  v̂ )'

EXERCISE 3 -17 . h e f t :  Position o f  eye o f  v isu a l observer w atch ing  cube pass overhead. R ig h t  top: W h a t the 
v isu a l observer sees as she looks up  from  below. R ig h t  b o tto m : H ow  the v isu a l observer can interpret the 
projection o f  the second figure.

(1) An observer using the rocket latticework of 
clocks says, “The stationary cube is really nei­
ther rotated nor contracted.”

(2) Someone riding in the rocket who looks at the 
stationary cube agrees, “The cube is really nei­
ther rotated nor contracted.”

(3) An observer using the laboratory latticework 
of clocks says, “The passing cube is really Lor- 
entz contracted but not rotated.”

(4) Someone standing in the laboratory frame 
looking at the passing cube says,' ‘The cube is 
really rotated but not Lorentz contracted.”

What can one rightfully say —  in a sentence or 
two — to make each observer think it reasonable that 
the other observers should come to different conclu­
sions?

d  The analysis of parts b  and c assumes that the 
visual observer looks with one eye and has no depth 
perception. How will the cube passing overhead be 
perceived by the viewer with accurate depth percep­
tion?
Reference: For a more complete treatment of this topic, see Edwin F. 
Taylor, Introductory Mechanics (John Wiley and Sons, New York, 
1963), pages 3 4 6 -3 6 0 .
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LORENTZ TRANSFORMATION

L I  LORENTZ TRANSFORMATION: 
USEFUL OR NOT?

related events or lonely events?
Events, and the intervals between events, define the layout of the physical world. No 
latticework of clocks there! Only events and the relation between event and event as 
expressed in the interval. That’s spacetime physics, lean and spare, as it offers itself to 
us to meet the needs of industry, science, and understanding.

There’s another way to express the same information and use it for the same 
purposes: Set up a free-float latticework of recording clocks, or the essential rudiments 
of such a latticework. The space and time coordinates of that Lorentz frame map each 
event as a lonesome individual, with no mention of any connection, any spacetime 
interval, to any other event.

This lattice-based method for doing spacetime physics has the advantage that it can 
be mechanized and applied to event after event, wholesale. These regimented space 
and time coordinates then acquire full usefulness only when we can translate them 
from the clock-lattice frame used by one analyst to the clock-lattice frame used by 
another.

This scheme of translation has acquired the name “Lorentz transformation.” Its 
usefulness depends on the user. Some never need it because they deal always with 
intervals. Others use it frequently because it regiments records and standardizes 
analysis. For their needs we insert this Special Topic on the Lorentz transformation. 
The reader may wish to read it now, or skip it altogether, or defer it until after Chapter 
4, 5, or 6. The later the better, in our opinion.

Events and intervals only: 
Spacetime lean and spare

O r isolated events described  
using latticework

Lorentz transformation: 
Translate event description 
from lattice to lattice

95
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L.2 FASTER THAN LIGHT?
a reason to examine the Lorentx transformation

No object travels faster than light.

So YOU say, but watch ME: I travel in a rocket that you observe to move at 4/5 light speed. Out 
the front of my rocket I fire a bullet that I observe to fly forward at 4/5 light speed. Then you 
measure this bullet to streak forward at 4 /5 '\ '4 /5  — 8/5 — 1.6 light speed, which is greater 
than the speed of light. There!

'  No!

Velocities do not odd

Events define velocities

Why not? Is it not true that 4/5 +  4/5 — 1-6?

As a mathematical abstraction: always true. As a description of the world: only 
sometimes true! Example 1: Add 4 /5  liter of alcohol to 4 /5  liter of water. The result? 
Less than 8 /5  = 1 .6  liter of liquid! Why? Molecules of water interpenetrate molecules 
of alcohol to yield a combined volume less that the sum of the separate volumes. 
Example 2: Add the speed you measure for the bullet (4/5) to the speed I measure for 
your rocket (4/5). The result? The speed I measure for the bullet is 40/41 =  0.9756. 
This remains less than the speed of light.

Why? And where did you get that number 40/4l for the bullet speed you measure?

I got the number from the Lorentz transformation, the subject of this Special Topic. 
The Lorentz transformation embodies a central feature of relativity: Space and time 
separations typically do not have the same values as observed in different frames.

Space an d  time separations between w hat?

Between events.

W hat events are we talking about here?

Event 1: You fire the bullet out the front of your rocket. Event 2: The bullet strikes a 
target ahead of you.

W hat do these events have to do with speed? We are arguing about speed!

Let the bullet hit the target four meters in front of you, as measured in your rocket. 
Then the space separation between event 1 and event 2 is 4 meters. Suppose the time 
of flight is 5 meters as measured by your clocks, the time separation between the two 
events. Then your bullet speed measurement is (4 meters of distance)/! 5 meters of 
time) =  4 /5 , as you said.

And w hat do YOU measure for the space and time separations in your laboratory fram e?

For that we need the Lorentz coord inate  transform ation  equations.



L.2 FASTER THAN LIGHT? 9 7

Phooey! I know how to reckon spacetime separations in different frames. We have been doing it  for 

several chapters! From measurements in one fram e we figure the spacetime interval, which has the 
same value in a ll  frames. End of story.

No, not the end of the story, but at least its beginning. True, the invariant interval has 
the same value as derived from measurements in every frame. That allows you to 
predict the time between firing and impact as measured by the passenger riding on the 
bullet — and measured directly by the bullet passenger alone.

Interval: Only a start in 
reckoning spacetime separations 
in different frames

Predict how?

You know your space separation x ' =  4 meters (primes for rocket measurements), and 
your time separation, t ' =  'b meters. You know the space separation for the bullet 
rider, x"  =  0 (double primes for bullet measurements), since she is present at both the 
firing and the impact. From this you can use invariance of rhe interval to determine the 
wristwatch time between these events for the bullet rider:

i t ' y  -  { x " f  =  {t'Y  -  {x'Y

or

(/")^ — (0)^ =  (5 meters)^ — (4 merers)^ — (3 meters)^

so that t” =  3 meters. This is the proper time, agreed on by all observers but measured 
directly only on the wristwatch of the bullet rider.

Fine. C an’t we use the same procedure to determine the space an d  time separations between these 
events in your laboratory frame, an d  thus the bullet speed fo r you?

Unfortunately not. We do reckon the same value for the interval. Use unprimed 
symbols for laboratory measurements. Then f- — xd =  {?) meters)^. That, however, is 
not sufficient to determine x  or t separately. Therefore we cannot yet find their ratio 
x /t,  which determines the bullet’s speed in our frame.

Need more to compare velocities 
in different frames

So how can we reckon these x an d  t  separations in your laboratory frame, thereby allowing us to 
predict the bullet speed you measure?

Use rhe Lorentz transformation. This transformation reports that our laboratory space 
separation between firing and impact is x =  40 /3  meters and the time separation is 
slightly greater: t =  41 /3  meters. Then bullet speed in my laboratory frame is 
predicted to be f  =  x j t  — 40/41 =  0.9756. The results of our analysis in three 
reference frames are laid out in Table L-1.

Compare velocities using 
Lorentz transformation

Is the Lorentz transformation generally useful, beyond the specific task of reckoning speeds as 
measured in different frames?

Oh yes! Generally, we insert into the Lorentz transformation the coordinates x ', t ' of an 
event determined in the rocket frame. The Lorentz transformation then grinds and 
whirs, finally spitting out the coordinates x, t of the same event measured in the 
laboratory frame. Following are the Lorentz transformation equations. Here is the 
relative velocity between rocket and laboratory frames. For our convenience we lay rhe 
posirive x-axis along the direction of motion of the rocket as observed in the laboratory 
frame and choose a common reference event for the zero of time and space for both 
frames.
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------Cj A B L E  L - T ^ ------

HOW FAST THE BULLET?
Bullet fired
(coordinates 

of this event)

Bullet hits
(coordinates 

of this event)

Speed of bullet
(computed from 

frame coordinates)

Rocket frame x' =  0 x' =  4 meters as measured
(moves at =  4/5 
as measured in laboratory)

l' =  0 t' =  5 meters in rocket frame: 
v' =  4/5 =  0.8

Bullet frame x" =  0 x" =  0 as measured
(moves at v' =  4/5 t"  =  0 t"  =  3 meters in bullet frame:
as measured in rocket) (from invariance 

of the interval)
r" =  0

Laboratory frame x =  0 X =  40/3 meters as measured
r =  0 t =  41/3 meters 

(from Lorentz 
transformation)

in laboratory frame:
1- =  40/41 =  0.9756

Lorentz transformation previewed

k' rel ‘
(1

x ' +  t'

(1
and

Check for yourself that for the impact event of bullet with target (rocket coordi­
nates: x ' =  A meters, / ' =  5 meters; rocket speed in laboratory frame: =  4 /5 ) one
obtains laboratory coordinates x  =  40 /3  meters and t =  41 /3  meters. Hence v =  x f t  
== 40/41 =  0.9756.

You say the Lorentz transformation is general. I f  it is so important, then why is this a  special topic 
rather than a  regular chapter?

Lorentz transformation: Useful 
but not fundamental

The Lorentz transformation is powerful; it brings the technical ability to transform 
coordinates from frame to frame. It helps us predict how to add velocities, as outlined 
here. It describes the Doppler shift for light (see the exercises for this chapter). On the 
other hand, the Lorentz transformation is not fundamental; it does not expose deep 
new features of spacetime. But no matter! Physics has to get on with the world’s work. 
One uses the method of describing separation best suited to the job at hand. On some 
occasions the useful fact to give about a luxury yacht is the 50-meter distance between 
bow and stern, a distance independent of the direction in which the yacht is headed. 
On another occasion it may be much more important to know that the bow is 30 
meters east of the stern and 40 meters north of it as observed by its captain, who uses 
North-Star north.

Two foundations of 
Lorentz transformation

W hat does the Lorentz transformation rest on? On w hat foundations is it  based?

On two foundations: (1) The equations must be linear. That is, space and time 
coordinates enter the equations to the first power, not squared or cubed. This results 
from the requirement that you may choose any event as the zero of space and time.
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(2) The spacetime interval between two events must have the same value when 
computed from laboratory coordinate separations as when reckoned from rocket 
coordinate separations.

All right, I 'll reserve judgment on the validity of what you claim, hut show me the derivation itself. 

Read on!

L.3 FIRST STEPS
invariance off the interval gets us started

Recall that the coordinates y  and z transverse to the direction of relative motion 
between rocket and laboratory have the same values in both frames (Section 3.6):

y - y
z =  z' (L-1)

where primes denote rocket coordinates. A second step makes use of the difference in 
observed clock rates when the clock is at rest or in motion (Section 1.3 and Box 3-3). 
Think of a sparkplug at rest at the origin of a rocket frame that moves with speed 
relative to the laboratory. The sparkplug emits a spark at time t' as measured in the 
rocket frame. The sparkplug is at the rocket origin, so the spark occurs at x ' =  0.

Where and when (x and t) does this spark occur in the laboratory? That depends on 
how fast, v^i, the rocket moves with respect to the laboratory. The spark must occur at 
the location of the sparkplug, whose position in the laboratory frame is given by

X =  V^it

Now the invariance of the interval gives us a relation between t and t',

{t'r -  ( x y  =  { t y  -  {oy = = f - x ^  =  f -  { v j f  =  t w -  vij>

Derive difference in clock rates

from which

t' =  t { \ -  ri,)V2

or

[when x' = 0] (L-2)

The awkward expression 1/(1 — occurs often in what follows. For simplic­
ity, this expression is given the symbol Greek lower-case gamma: /.

7 =
1

(1 -

Because it gives the ratio of observed clock rates, y is sometimes called the tim e 
stre tch  factor (Section 5.8). Strictly speaking, we should use the symbol /„i, since 
the value of y is determined by For simplicity, however, we omit the subscript in 
the hope that this will cause no confusion. With this substitution, equation (L-2) 
becomes

y f [when x' = 0] (L-3)

Time stretch factor defined



lO O  SPECIAL TOPIC LORENTZ TRANSFORMATION

Substitute this into the equation x = v ^ ^ t  above to find laboratory position in terms of 
rocket measurements:

[when x' = 0] (L-4)

Equations (L-1), (L-3), and (L-4) give the first answer to the question, “If we know 
the space and time coordinates of an event in one free-float frame, what are its space 
and time coordinates in some other overlapping free-float frame?” These equations are 
limited, however, since they apply only to a particular situation: one in which both 
events occur at the same place {x' =  0) in the rocket,

L 4  FORM OF THE LORENTZ 
TRANSFORMATION

any event can be reference event? then 
transformation is linear

Lorentz transformation: 
Linear equations

Arbitrary event as reference event? 
Then Lorentz transformation 

must be linear.

What general form does the Lorentz transformation have? It has the form that 
mathematicians call a linear transform ation . This means that laboratory coordi­
nates X and t are related to linear (first) power of rocket coordinates x '  and t '  by 
equations of the form

/ =  fix' -f D t'
X =  Gx' +  Ht' (L-5)

where our task is to find expressions for the coefficients B, D, G, and H  that do not 
depend on either the laboratory or the rocket coordinates of a particular event, though 
they do depend on the relative speed

Why must these transfotmations be linear? Because we are free to choose any event 
as our reference event, the common origin x =  y =  z =  / =  0 in all reference frames. Let 
our rocket sparkplug emit the flashes at =  1 and 2 and 3 meters. These are equally 
spaced in rocket time. According to equation (L-3) these three events occur at 
laboratory times t =  ly  and 2y and 37 meters of time. These are equally spaced in 
laboratory time. Moving the reference event to the first of these events still leaves them 
equally spaced in time for both observers: t ' =  0 and 1 and 2 meters in the rocket and t 
=  0 and ly  and 2y in the laboratory.

In contrast, suppose that equation (L-3) were not linear, reading instead t =  Kt'^, 
where K is some constant. Rocket times t ' = \  and 2 and 3 meters result in laboratory 
times t =  IK  and 4K  and 9K  meters. These are not equally spaced in time for the 
laboratory observer. Moving the reference event to the fitst event would result in 
rocket times t' =  0 and 1 and 2 meters as before, but in this case laboratoty times t =  0 
and 1K and 4K  metets, with a completely different spacing. But the choice of reference 
event is arbitrary: Any event is as qualified to be reference event as any other. A clock 
that runs steadily as observed in one frame must run steadily in the other, independent 
of the choice of reference event. We conclude that the relation between t and t ' must be 
a linear one. A similar argument requires that events equally separated in space in the 
rocket must also be equally separated in space as measured in the laboratory. Hence 
the Lorentz transformation must be linear in both space and time coordinates.
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L5  COMPLETING THE DERIVATION
invariance off the interval completes the story

Equations (L-3) and (L-4) provide coefficients D  and H  called for in equation (L-5):

t — Bx' +  yt'
X =  Gx' +  v^yyt' (L-6)

About the two constants B and G we know nothing, for an elementary reason. All 
events so far considered occured at point x' =  0 'm the rocket. Therefore the two 
coefficients B and G could have any finite values whatever without affecting the 
numerical results of the calculation. To determine B and G we turn our attention from 
an x ' =  0 event to a more general event, one that occurs at a point with arbitrary rocket 
coordinates x ' and t ' . Then we demand that the spacetime interval have the same 
numerical value in laboratory and rocket frames for any event whatever;

Demanding invariance of 
interval . . .

Substitute expressions for t and x from equation (L-6):

(fix' +  y t'Y  -{ G x ' +  p^^yt'y =  r'2 -  x'^

On the left side, multiply out the squares. This leads to the rather cumbersome result

B2 -b 2Byx't' +  yV ^  -  G^x'^ -  2Gv^{yx't' -  vlyyh'^ =

Group together coefficients of coefficients of x'^, and coefficients of the cross-term 
x 't ' to obtain

y \ \  -  +  2y{B -  v jG )  x 't ' -  {G^ -  B?)x'^ =  t'^ -  x'^ a-7)

Now, t ' and x ' can each take on any value whatsoever, since they tepresent the 
coordinates of an arbitrary event. Under these circumstances, it is impossible to satisfy 
equation (L-7) with a single choice of values of B and Gunless they are chosen in a very 
special way. The quantities B and G must first be such as to make the coefficient of x 't ' 
on the left side of equation (L-7) vanish as it does on the tight:

2y{B -  VJG) =  0

But 7 can never equal zero. The value of 7 =  1 /(1  ~  ^) *̂  ̂equals unity when =  0 
and is greatet than this fot any othet values of Hence the left side of this equation 
can be zero only if

(B -  =  0 or B — v„,G (L-8)

Second, B and G must be such as to make the coefficient of x equal on the left and 
right of equation (L-7); hence

-  B2 =  1

Substitute B from equation (L-8) into equation (L-9):

G^ -  {v^ fiY  = 1  ot G K \ - v l ^ ) = \

(L-9)

. . . between any pair of events 
whatsoever . . .

. . . leads to completed form of 
Lorentz transformation.



The Lorentz transformation

Divide through by (1 — and take the square root of both sides:

1

But the right side is just the definition of the time stretch factor y, so that

G = y

Substitute this into equation (L-8) to find B:

B =  v^y

1 0 2  SPECIAL TOPIC LORENTZ TRANSFORMATION

These results plus equations (L-1) and (L-6) yield the Lorentz transformation equa­
tions:

t =  +  yt'
x =  yx' +  v„iyt' (L-lOa)
y = : /
ẑ — z

or, substituting for the value of gamma, y =  1/(1 —

x' +  Vg,/
(L-1 Ob)

y - y and z — z

In summary, the Lorentz transformation equations rest fundamentally on the re­
quired linearity of the transformation and on the invariance of the spacetime interval. 
Invariance of the interval was used twice in the derivation. First, we examined a pair 
of events both of which occur at the same fixed location in the rocket, so that rocket 
time between these events— proper time, wristwatch time— equals the space-time 
interval between them (Section L.3). Second, we demanded that the interval also be 
invariant between every possible event and the reference event (the present section).

L.6 INVERSE LORENTZ 
TRANSFORMATION

from laboratory event coordinates, reckon 
rocket coordinates

Equations (L-10) provide laboratory coordinates of an event when one knows the 
rocket coordinates of the same event. But suppose that one already knows the 
laboratory coordinates of the event and wishes to predict the coordinates of the event 
measured by the rocket observer. What equations should be used for this purpose?

An algebraic manipulation of equations (L-10) provides the answer. The first two 
of these equations can be thought of as two equations in the two unknowns x ' and t ' . 
Solve for these unknowns in terms of the now-knowns x  and t. To do this, multiply 
both sides of the second equation by and subtract corresponding sides of the
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resulting second equation from the first. Terms in x  cancel to yield

y ■ t'
t =  yt' -  vuyt' =  n i  -K O f =  32  vf'  =  yd =  —  t' =  -

y2 y

Here we have useci the definition — 1/(1 — The equation for t' can then be 
written

t' =  - ^ r ^ y x  +  yt

A similar procedure leads to the equation for x ' . Multiply the first of equations (L-10) 
by i'rel and subtract corresponding sides of the first equation from the second —  try it! 
The y and z components are respectively equal in both frames, as before. Then the 
inverse Lorentz transfo rm ation  equations become

t '=  -v ,,^ y x -V y t  
/  - y x -  v^^yt 
y = yr _
Z —  Z

Or, substituting again for gamma, y =  1/(1 —

(L-lla )

(1
X • ^el t

(L-llb )

and

Long derivation of inverse 
Lorentz transformation

Inverse Lorentz transformation

Equations (L-11) transform coordinates of an event known in the laboratory frame to 
coordinates in the rocket frame.

A simple but powerful argument from symmetry leads to the same result. The symmetry 
argument is based on the relative velocity between laboratory and rocket frames. With 
respect to the laboratory, the rocket by convention moves with known speed in the 
positive x-direction. With respect to the rocket, the laboratory moves with the same speed 
but in the opposite direction, the negative x-direction. This convention about positive and 
negative directions —  not a law of physics! —  is the only difference between laboratory 
and rocket frames that can be observed from either frame. Lorentz transformation 
equations must reflect this single difference. In consequence, the “inverse” (laboratory- 
to-rocket) transformation can be obtained from the “direct” (rocket-to-laboratory) 
transformation by changing the sign of relative velocity, v ^ , in the equations and 
interchanging laboratory and rocket labels (primed and unprimed coordinates). Carrying 
out this operation on the Lorentz transformation equations (L-10) yields the inverse 
transformation equations (L-11).

Short derivation of inverse 
Lorentz transformation

L.7 ADDITION OF VELOCITIES
add light velocity to light velocity: get light 
velocity!

The Lorentz transformation permits us to answer decisively the apparent contradiction 
to special relativity outlined in Section L.2, namely the apparent addition of velocities 
to yield a resultant velocity greater than that of light.
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Return to velocity addition 
paradox

I travel in a rocket that you observe to move at 4 (5 light speed. Out the front of my rocket I fire a 
bullet that I observe to fly forward at 4fb light speed. Then you measure this bullet to streak 
forward at4l3'k-4l5 = 8j5 = 1.6 light speed, which is greater than the speed of light. There!

SAMP L E PRO B L E M L - 1
TRA N S FO RM IN G  OVER AND BACK
A rocket moves with speed =  0.866 (so y =  2) 10 meters, y = 1  meters, z =  i  meters, and t' =
along the x-direction in the laboratory. In the 20 meters of light-travel time with respect to the
rocket frame an event occurs at coordinates x' =  reference event.

a. What are the coordinates of the event as observed in the laboratory?

b. Transform the laboratory coordinates back to the rocket frame to verify that the 
resulting coordinates are those given above.

SOLUTION
a. We already know from Section 3.6 — as well as from the Lorentz transformation, 

equation (L-10) — that coordinates transverse to direction of relative motion are 
equal in laboratory and in rocket. Therefore we know immediately that

y — y ' — 1 meters 
z — z' — i  meters

The X  and t  coordinates of the event as observed in the laboratory make use of the 
first two equations (L-10):

t  =  v^^ifx' +  yt' =  (0 .866)(2)(10 meters) +  (2)(20 meters)
=  17.32 +  40 =  57.32 merers

and

X — yx' -h v^^fyt' =  2(10 meters) +  (0.866)(2)(20 meters)
=  20 +  34.64 =  54.64 merers

So rhe coordinates of the event in the laboratory are t =  57.32 meters, x  =  54.64 
meters, y =  l  meters, and z =  3 meters.

b. Use equarion (L-11) ro rransform back from laboratory to rocket coordinates.

t ' =  ~ v^{yx +  yt =  — (0.866)(2)(54.64 meters) +  (2)(57.32 meters)
=  —94.64 -b 114.64 =  20.00 meters

and

X = y x — v ^ y t  =  2(54.64 merers) — (0.866)(2)(57.32 meters) 
=  109.28 -  99.28 =  10.00 meters

as given in rhe original statement of the problem.



To analyze this experiment, convert statements about the bullet to statements about 
events, since event coordinates are what the Lorentz transformation transforms. Event 
1 is the firing of the gun, event 2 the arrival of the bullet at the target. The Lorentz 
transformation equations can give locations x,, and X2, ?2 of these events in the 
laboratory frame from their known locations x \ ,  t \  and x  2 , t '2 in the rocket frame. In 
particular:

X2 =  yx2 +  v^C/t' 2 

Xi =  y x / +

Subtract corresponding sides of these two equations:

(X2 — xi) =  y (x 2 — x 'l) +  v,^{y{t'2 — z'l)

We are inrerested in the differences between the coordinates of the two emissions.
Indicate these differences with the Greek uppercase delta. A, for example Ax. Then 
this x-equation and the corresponding /-equation become

L.7 ADDITION OF VELOCITIES 1 0 5

A x  =  y A x ' +  /^ „ iy A /  
A /  =  t^reiyAx' +  y A / (L-12)

Incremental event separations 
define velocities

The subscript “tel” distinguishes relative speed between laboratory and rocket frames 
from other speeds, such as particle speeds in one frame or the other.

Bullet speed in any frame is simply space sepatation between two events on its 
trajectory measured in that frame divided by time between them, observed in the same 
frame. In the special case chosen, only the x-coordinate needs to be considered, since 
the bullet moves along the direction of relative motion. Divide the two sides of the first 
equation (L-12) by the corresponding sides of the second equation to obtain labora­
tory speed:

A x  yA x^ +  v̂ {yiS.t'
A /  t „ ,y A x '  +  y A /

Then the time stretch factor y cancels from the numerator and denominator on the 
right. Divide every term in numerator and denominator on the right by A/'.

Ax _  (A x '/A /)  +
A t v^^fA x '/A t') +  1

Now, A x '/ A t ' is just distance covered per unit time by the patticle as observed in 
the rocket, its speed —  call it v , with a prime. And A x /A t  is particle speed in the 
laboratory —  call it simply v. Then (reversing order of terms in the denominatot to 
give the result its usual form) the equation becomes

v' +  v„
1 + V v„

(1-13) Law of Addition of Velocities

This is called the Law o f  A d d itio n  o f  V elocities in one dimension. A better name is 
the Law o f  C o m bination  o f  V elocities, since velocities do not “add” in the usual 
sense. Using the Law of Combination of Velocities, we can predia bullet speed in the 
laboratory. The bullet travels at v' — 4 /5  with respect to the rocket and the rocket 
moves at v^  ̂=  4 /5  with tespect to the laboratory. Therefore, speed v of the bullet

(continued on page 1 10)
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S A MP L E  P R O B L E M  L-2
“ ET TU, S P A C E T I M E I”
Julius Caesar was murdered on March 15 in the 
year 44 B.c. at the age of 55 approximately 2000 
years ago. Is there some way we can use the laws of 
relativity to save his life?

Let Caesar’s death be the reference event, la­
beled 0: =  0, C ~  0. Event A is you reading this
exercise. In the Earth frame the coordinates of 
event A  are x^ =  0 light-years, =  2000 years. 
Simultaneous with event A  in your frame, Starship 
Enterprise cruising the Andromeda galaxy sets off

a firecracker: event B. The Enterprise moves along 
a straight line in space that connects it with Earth. 
Andtomeda is 2 million light-years distant in our 
frame. Compared with this distance, you can ne­
glect the orbit of Earth around Sun. Therefore, in 
our frame, event B has the coordinates Xg =  2 X 
10^ light-years, tg — 2000 years. Take Caesar’s 
murder to be the reference event for the Enterprise 
too (x / =  0 , r /  =  0).

a. How fast must the Enterprise be going in the Earth frame in order that Caesar’s 
murder is happening N OW  (that is, =  0) in the Enterprise rest frame? Under 
these circumstances is the Enterprise moving toward or away from Earth?

b. If you are acquainted with the spacetime diagram (Chapter 5), draw a spacetime 
diagram for the Earth frame that displays event 0  (Caesar’s death), event A  (you 
reading this exercise), event B (firectacker exploding in Andromeda), your line of 
NOW  simultaneity, the position of the Enterprise, the worldline of the Enter­
prise, and the Enterprise NOW  line of simultaneity. The spacetime diagtam need 
not be drawn to scale.

c. In the Enterprise frame, what are the x and / coordinates of the firecracker 
explosion?

d. Can the Enterprise firecracker explosion warn Caesar, thus changing the course of 
Earth history? Justify your answer.

SOLUTION
a. From the statement of the problem.

Xo — x /  — 0 
L =  l /  =  0

=  0
2000 years

Xg — 2 X 10  ̂ light-years 
/g =  2000 years

We want the speed of the Entetprise such that tg' — 0. The first two Lorentz 
transformation equations (L-10) with tg' =  0 become

'̂rel y^B 
X g y X g

We do not yet know the value of X g '.  Solve for by dividing the two sides of the
first equation by the respective sides of the second equation. The unknown Xg' 
drops out (along with y), and we are left with in terms of the known quantities 
tg and x„:

'B _ 2 X 10  ̂ years
— ---- ^ -----=  10-3 =  0.001
2 X  1 0^ vpar<:Xg 2 X  10  ̂years

This is the desired speed p^̂  between Earth and Enterprise frames. This velocity is 
a positive quantity, so the Enterprise moves in the positive x-direction, namely 
away from Earth.
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Surprised to see a speed given as the ratio of a time separation to a space 
separation: Then realize that x^ and /g are not displacements of any
particle. Nothing can travel the distance Xg in the time /g, as discussed in d. The 
goal here is to find a frame in which Caesar’s death and the firecracker explosion 
are simultaneous. For this limited purpose the rocket speed =  /g/xg is correct.

Why is the relative velocity so small compared with the speed of light? 
Because of the large denominator Xg in the equation that leads to this value. 
Consider the string of Earth clocks stretching toward Andromeda when all Earth 
clocks read zero time (Caesar’s death). Enterptise clocks read (from equations 
L-11 with / =  0) as follows: / ' =  — fx . This is an example of the relativity of 
simultaneity (Section 3-4). The farther the x-distance from Earth, the earlier will 
Enterprise clock read. With x =  2 million light-years, the relative speed does 
not have to be large to carry Enterprise time back 2000 years for Earth.

b.

Earth spacetime diagram, showing events 0, A, and B. Not to scale.

c. We need the value of gamma, y, for the inverse Lorentz transformation equation 
(L-11). This value is very close to unity, and from it come tg and Xg'.

y =  .
1 1 1

1 +
10-

[1  -  i i  -  (10-3)231/2  Q  _  1 0 -6 ]l/ 2

tg =  - V , , J X g  -b ytg =  }»(- 10“ 3 X 2 X 10  ̂ -f 2 X 103)
=  y( - 2  X 103 4- 2 X 103) =  0 years 

Xb =  yxB -  v â JIb =  7(2 X 10  ̂ -  10-3 X 2 X 103) =  2y(l -  10-«) 10«
10-6 10-

=  2^1 “  10-6)106 =  2^

«= 1.999999 X 106 light-years.

1 106

We chose the relative velocity so that the time of the firecracker explosion as 
observed in the rocket is the same as the time of Caesar’s death, namely tg' =  0. 
The x-coordinate of this explosion is not much different in the two frames because 
their relative velocity is so small.

d. There exists a frame — the rest frame of the Enterprise —  in which Caesar’s death 
and the firecracker explosion occur at the same time. In this frame a signal 
connecting the two events would have to travel at infinite speed. But this is 
impossible. Therefore the Enterprise cannot warn Caesar; his death is final. Sorry. 
(Note: In the language of Chapter 6 , the relation between the two events is 
spacelike, and spacelike events cannot have a cause-effect relationship.)
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WHY NO THING TRAVELS FASTER THAN LIGHT
A material object traveling faster than light? No! If one 
did, we could violate the normal order of cause and 
effect in a million testable ways, totally contrary to all 
experience. Here we investigate one example, making 
use of Lorentz transformation equations.

The Peace Treaty of Shalimar was signed four years 
before the Great Betrayal. So pivotal an event was the 
Great Betrayal that it was taken as zero of space and 
time.

By the Treaty of Shalimar, the murderous Klingons 
agreed to stop attacking Federation outposts in return 
for access to the Federation Technical Database. Fed­
eration negotiators left immediately after signing the 
Shalimar Treaty in a ship moving at 0.6 light speed.

Within four years the Klingons used the Federation 
Technical Database to develop a faster-than-light pro­
jectile, the slaughtering Super. On that dark day of 
Great Betrayal (reference event 0), the Klingons 
launched the Super at three times light speed toward 
the retreating Federation ship.

Two Federation space colonies lay between the Klin­
gons and the point of impact of the Super with the Fed­
eration ship. A lonely lookout at the first colony wit­
nessed with awe the blinding passage of the Super 
(event 1). Later many citizens of the second colony 
gaped as the Super demolished one of their communi­
cation structures (event 2) and zoomed on. Both colo­
nies desperately sent warnings toward the Federation 
ship, but to no avail since the Super autran the radio 
signals.

Klittgon (**iaboratory”) spacetime diagram . The Kltngon worldline is 
the vertical time axis. The Treaty of Shalimar is followed four years later by 
the Great Betrayal {event 0) at which Klingons launch the Super, which moves 
at three times light speed. Traveling from left to right, the Super passes one 
Federation colony {event 1) and then another {event 2). Finally the Super 
destroys the retreating ship of Federation negotiators {event

Finally, at event 3, the Super overtook and destroyed 
the Federation ship. All Federation negotiators were 
lost in a terrible flash of light and scattering of debris. A 
long dark period of renewed warfare began.

But wait! Look again at events of the Great Betrayal, this 
time from the point of view of the Federation rocket 
ship. Where and when does the Great Betrayal occur in 
this frame? The Great Betrayal is the “ hinge of history,” 
the reference event, the zero of space and time coordi­
nates for all laboratory and rocket frames.

Where and when does the Super explode (event 3) in 
this rocket frame? In the Klingon “ laboratory” frame, 
event 3 has coordinates X3  = 3 light-years and =  1 
y e a r . U se the inverse  Lorentz transform ation  eq u atio n s  
to find the location of event 3 in the rocket frame of the 
Federation negotiators. Calculate the time stretch fac­
tor y using speed of the Federation rocket, v,ei = 0.6, 
with respect to the Klingon frame:

1 1 1
^ [, _ ( o .6 )2]>/2 [ i - o .36]' '2

1
[0.64]’'2 0.8= 1.25
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^*Rocket” sp a c e tim e  d ia g r a m  o f  d e p a r t in g  F e d e r a t io n  n e g o tia to rs . In
this frame their destruction comes first {event 3), followed by the passage of the 
Super from right to left past Federation colonies in reverse order (event 2  
followed by event 1). Finally, the Super enters the Klingon launcher without 
doing further damage {event 0). The Great Betrayal has become the Great 
Confusion of Cause and Effect.

Substitute these values into equations (L-1 1) to reckon 
the rocket coordinates of event 3:

f' 3  =  -V re iy xa  +  yf3
=  —(0.6H1.25)(3 years) + (1.25)(1 year)
= —2.25 years + 1.25 years = — 1 year 

x'3 =  7x3 — v„|yt3
= (1.25)(3 years) — (0.6)(1.25)(1 year)
= 3.75 years — 0.75 year = 3 years

Event 3 is plotted in the rocket diagram and the world­
line of the Super drawn by connecting event 3 with the 
launching of the Super at event 0. Notice that this 
worldline slopes downward to the right. More about 
the significance of this in a minute.

In a similar manner find the rocket coordinates of the

treaty signing at Shalimar (subscript Sh), which has lab­
oratory coordinates Xĵ  = 0  and tsh ~ years:

f’sh ~  ~  ''reiyxjh -h yfsh
= -(0.6)(1.25)(0 years) -h (1.25)(-4  years)
= — 5 years 

x'sh =  yxsh -  Vreiyfsh
=  (1.25)(0 years) -  (0.6)(1.25)(-4 years)
= -f3 years

In the Federation (rocket) spacetime diagram, the 
worldline of Federation negotiators extends from 
treaty signing at Shalimar vertically to explosion of the 
Super (event 3). The worldline of the Klingons extends 
from Shalimar diagonally through the launch of the 
Super at event 0.

In the Federation spacetime diagram, the worldline for 
the Super tilts downward to the right. In this frame 
deaths of Federation negotiators (event 3) occur at a 
time f' 3  = minus 1 y e a r ,  that is, b e f o r e  the treacherous 
Klingons launch the Super at the event of Great Be­
trayal (reference event 0). From the diagram one would 
say that the Super moves with three times light speed 
from  Federation ship t o w a rd  the Klingons. This seems to 
be verified by the fact that in this frame the Super 
passes Federation colonies in reverse order, event 2 
followed by event 1 , going in the opposite direction. 
Yet Federation negotiators have created no such terri­
ble weapon and in fact are destroyed by it at the mo­
ment they are supposed to launch it, as proved by the 
flying photons and debris. More: Klingons suffer no 
damage from the mighty impact of the slaughtering 
Super (event 0). Rather, in this frame it enters their 
launching cannon mild as a lamb.

What have we here? A confusion of cause and effect, a 
confusion that cannot be straightened out as long as we 
assume that the Super —  or any other material object 
—  travels faster than light in a vacuum.

Why does no signal and no object travel faster than 
light in a vacuum? Because if either signal or object did 
so, the entire network of cause and effect would be 
destroyed, and science as we know it would not be 
possible.
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relative to the laboratory comes from the expression

Velocity addition paradox  
resolved

4 /5  +  4 /5 8/5 8/5 40
1 +  (4/5X 4/5) 1 +  16/25 41/25 41

Thus the bullet moves in the laboratory at a speed less than light speed.
As a limiting case, suppose that the “bullet” shot out from the front of the rocket is, 

in fact, a pulse of light. Guess: What is the speed of this light pulse in the laboratory? 
Here is the calculated answer. Light moves with respect to the rocket at speed f ' = l  
while the rocket continues along at a speed =  4 /5  with respect to the laboratory. 
The light then moves with respect to the laboratory at speed p:

Light speed is invariant, 
as expected.

1 +  4 /5  _  9 /5  _
l + ( l ) ( 4 / 5 )  9 /5  ~

So light moves with the same speed in both frames, as required by the Principle of 
Relativity. Question: Is this true also when a light pulse is shot out of the rear of the 
rocket?

S A M P L E  P R O B L E M  L-3
THE FIRING MESON
A K° (pronounced “K-naught”) meson at rest in a 
rocket frame decays into 7T'*' (“pi plus”) meson 
and a 7l~ (“pi minus”) meson, each having a 
speed of =  0.85 with respect to the rocket. Now 
consider this decay as observed in a laboratory with

SOLUTION

respect to which the K° meson travels at a speed of 
t'rei ~  0.9. What is the greatest speed that one of 
the n  mesons can have with respect to the labora­
tory? What is the least speed?

Let the speeding fC°-meson move in the positive x-direction in the laboratory. In the 
rocket frame, daughter TT-mesons come off in opposite directions. Their common line of 
motion can, however, be oriented arbitrarily in this frame. The maximum speed of a 
daughter TT-meson in the laboratory results when it is emitted in the forward x-direction. 
For such a meson, the law of addition of velocities gives

V + 0.85 +  0.9 1.75
1 +  (0.85)(0.9) 1.765

=  0.9915

Thus adding a speed of 0.85 to a speed of 0.9 does not yield a resulting speed greater than 
1, light speed.

The slowest laboratory speed for a daughter meson occurs when it is emitted in the 
negative x-direction in the rocket frame. In this case the velocity of the daughter meson is 
negative and the law of addition of velocities becomes a law of subtraction of velocities:

V +  V,
^min , /

\ —  V v„

rel -0.85 +  0.9 0.05
1 -  (0.85K0.9) 0.235

0.2128

Although the minimum-speed meson moves to the left in the rocket, it moves to the right 
in the laboratory because of the very great speed of the original fC°-meson in the 
laboratory.



REFERENCE 1 1 1

L.8 SUMMARY
Lorentz transformation deals with coordinates, 
not invariant quantities

Given the space and time coordinates of an event with respect to the reference event in 
one free-float frame, the Lorentz coord inate  transfo rm ation  equations tell us 
the coordinates of the same event in an overlapping free-float frame in relative motion 
with respect to the first. The equations that transform rocket coordinates (primed 
coordinates) to laboratory coordinates (unprimed coordinates) have the form

v„,x■' +  /

(1 ) l / 2

(1 V ) l / 2
rel

and

(L-lOb)

where stands for relative speed of the two frames (rocket moving in the positive 
x-direction in the laboratory). The inverse Lorentz transfo rm ation  equations 
transform laboratory coordinates to rocket coordinates:

/' =

(1
■ y and

(L-11b)

in which is treated as a positive quantity. In both these sets of equations, coordi­
nates of events are measured with respect to a reference event. It is really only the 
difference in coordinates between events that matter, for example %2 ~  =  Ax for any
two events I and 2, not the coordinates themselves. This is important in deriving the 
Law of Addition of Velocities.

The Law o f A ddition o f Velocities or Law o f C om bination o f V elocities in
one dimension follows from the Lorentz transformation equations. This law tells us the 
velocity of a particle in the laboratory frame if we know its velocity v' with respect to 
the tocket and relative speed between rocket and laboratory.

1 +  v t (L-13)

REFERENCE
Sample Problem L-3, The Firing Meson, was adapted from A. P. French, Special 
Relativity (W.W. Norton, New York, 1968), page 159.
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SPECIAL TOPIC EXERCISES

PRACTICE
L-1 a super-speed super?
Take two more steps in the parable of the Great 
Betrayal (Box L-1).

a Find the speed of a new rocket frame moving 
relative to the Klingon frame such that the Super 
travels at 6 times the speed of light in this new frame. 
Hint: Examine the coordinates x '  and t '  of event 3 in 
the new frame. The ratio of these two, x ' / t ' , is the 
speed of the Super in this frame. We know the coor­
dinates of event 3 in the Klingon frame. There­
fore . . .

b Find the speed of yet another rocket frame, 
relative to the Klingon frame, such that the Super 
travels with infinite speed in this frame. Hint: What 
does infinite speed imply about the time t '  between 
events 0 and 3 in this new frame?

L-2 a bad clock
Note: This exercise uses spacetime diagrams, intro­
duced in Chapter 5.

A pulse of light is reflected back and forth between 
mirrors A  and B separated by 2 meters of distance in 
the ^-direction in the Earth frame, as shown in the 
figure (left). A swindler tells us that this device con­
stitutes a clock that “ticks” every time the pulse 
arrives at either mirror.

The swindler claims that events 1 through 6 are 
sequential “ticks” of this clock (center). However, we 
notice that the ticking of the clock is uneven in a 
rocket frame moving with speed in the Earth 
frame (right). For example, there is less time between 
events 0 and 1 than between events 1 and 2 as mea­
sured in the rocket frame.

a What is the physical basis for the “bad” be­
havior of this clock? Use the Lorentz transformation

mirror A

2 meters

light
pulse

mirror 6

EARTH FRAME ROCKET FRAME
EXERCISE L-2. heft: Horizontal light-pulse clock as observed in the Earth frame. Center: Spacetime diagram showing worldlines of mirrors 
A and B and the “uniformly ticking” light pulse as observed in the Earth frame. Right: Time lapses between sequential ticks ofthe light-pulse 
clock are not uniform as observed in the rocket frame.
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equations to account for the uneven ticking of this 
clock in the rocket frame.

b Use some of the same events 0 through 4 to 
define a “good” clock that ticks evenly in both the 
laboratory frame and the rocket frame. From the 
spacetime diagrams, show qualitatively that your 
good clock “runs slow” as observed from the rocket 
frame —  as it must, since the clock is in motion with 
respect to the rocket frame.

C Explain why the clock of Figure 1 -3 in the text 
is a “good” clock.

L-3 the Galilean transformation
a Use everyday, nonrelativistic Newtonian ar­

guments to derive transformation equations between 
reference frames moving at low relative velocities. 
Show that the result is

{Newtonian: «  c) {1)

(Newtonian: «  c) (2)

where is time measured in seconds and is 
speed in conventional units (meters/second for exam­
ple). List the assumptions you make in your deriva­
tion.

b Convert equations (1) and (2) to measure time 
t in meters and unitless measure of relative velocity, 
frei “  Non/'"- Show the tesults are:

x ' =  X —  t (Newtonian: v «  1) (3)

t ' —  t (Newtonian: V«  1) (4)

Do the new units make these equations correct at 
high relative velocity between frames?

C Use the first two terms in the binomial expan­
sion to find a low-velocity approximation for /  in the 
Lorentz transformation.

y-
1

(1 -

(1 -  v i y 1/2 1

Show that this expression differs from unity by less 
than one percent provided p is less than 1/7. A sports 
car can accelerate uniformly from rest to 60 miles/ 
hour (about 27 meters/second) in 7 seconds. 
Roughly how many days would it take for the sports 
car to reach y =  1/7 at the same constant accelera­
tion?

d Set 7 =  1 in the Lorentz transformation equa­
tions. Show that the resulting “low-velocity Lorentz 
transformation” is

x ' —  X — t (Lorentz: v «  1) (5)

t ' =  — v^^x y  t (Lorentz: v «  1) (6)

What is the difference between the time transfor­
mations for the “Newtonian low-velocity limit” of 
equation (4) and the “Lorentz low-velocity limit” of 
equation (6)? How can they both be correct? The term 

does not depend on any time lapse, but only on 
the separation x  of the event from the laboratory 
origin. This term is due to the difference of synchroni­
zation of clocks in the two frames.

e In each of the following cases a laboratory 
clock (measuring /) at a distance x  from the origin as 
measured in the laboratory frame is compared with a 
passing rocket clock (measuring / ) .  Say whether or 
not the time difference t — t ' =  v̂ ^̂ x can be detected 
using wristwatches (accuracy of 10~  ̂second =  3 X 
10  ̂ meters of light-travel time) and using modern 
electronic clocks (accuracy of 10“  ̂ second =  0.3 
meter of time).

(1) Sports car traveling at 100 kilometers/hour 
(roughly 30 meters/second) located 1000 
kilometers down the road from the origin as 
measured in the Earth frame.

(2) Moon probe traveling at 30,000 kilometers/ 
hour passing Moon, 3.8 X 10’ kilometers 
from the origin on Earth as measured in the 
Earth frame.

(3) Distance from origin on Earth at which space 
probe traveling at 30,000 kilometers/hour 
leads to detectable time difference between 
rocket wristwatch and adjacent Earth-linked 
latticework clock. Compare with Earth-Sun 
distance of 1.5 X 10“  meters.

f Summarize in a sentence or two the conditions 
under which the regular Galilean transformation 
equations (3) and (4) will lead to correct predictions.

L-4 limits off Newtonian 
mechanics

Use the particle speed =  1 /7  (Exercise L-3) as an 
approximate maximum limit for the validity of 
Newtonian mechanics. Determine whether or not 
Newtonian mechanics is adequate to analyze motion 
in each of the following cases, following the example.

Example: Satellite circling Earth at 30,000 
kilometers/hour =  18,000 miles/hour. Answer: 
Light moves at a speed =  (3 X 10’ kilometers/ 
second) X (3600 seconds/hour) =  1.08 X 10  ̂
kilometers/hour. Therefore the speed of the satellite 
in meters/metet is v — Nonv/'" ~  2.8 X 10~’. This
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is much less than =  1/7, so the Newtonian de­
scription of satellite motion is adequate.

a  Earth circling Sun at an orbital speed of 30 
kilometers/second.

b Electron circling a proton in the orbit of small­
est radius in a hydrogen atom. Discussion: The 
classical speed of the electron in the inner orbit of an 
atom of atomic number Z, where Z is the number of 
protons in the nucleus, is given, for low velocities, by 
the expression v =  Z / \ ^ l . For hydrogen, Z =  1.

c Electron in the inner orbit of the gold atom, for 
which Z =  79.

d  Electron after acceleration from rest through a 
volrage of 5000 volts in a black-and-white television 
picture tube. Discussion: We say that this electron 
has a kinetic energy of 5000 electron-volts. One elec­
tron-volt is equal to 1.6 X  10“ ^̂  joule. Try using the 
Newtonian expression for kinetic energy.

e Electron after acceleration from rest through a 
voltage of 25,000 volts in a color television picture 
tube.

f  A proton ot neutton moving with a kinetic 
energy of 10 MeV (million electron-volts) in a nu­
cleus.

PROBLEMS
L-5 Doppler shift
A sparkplug at rest in the rocket emits light with a 
frequency/'’ pulses or waves per second. W hat is the 
frequency / of this light as observed in the laboratory? 
Let this train of waves (or pulses) of light travel in the 
positive x-direction with speed c, so that in the course 
of one meter of light-travel time, f / c  of these pulses 
pass the origin of the laboratory frame. It is under­
stood that the zeroth or “fiducial’ ’ crest or pulse passes 
the origin at the zero of time— and that the origin of 
the rocket frame passes the origin of the laboratory 
frame at this same time.

a  Show that the x-coordinate of the «th pulse or 
wave crest is related to the time of observation t  (in 
meters) by the equation

n =  (//c)(r — x)

b The same argument, applied in the rocket 
frame, leads to the relation

n =  — x'}

Express this rocket formula in laboratory coordi­
nates X  and t  using the Lorentz transformation. 
Equate the resulting expression f o r / ' to the labora­

tory formula for /  in terms of x  and t to derive the 
simple formula for/in terms of f '  and , the relative
speed of laboratory and rocket frames.

(wave moves in 
positive x-direction]

e Now observe a wave moving along the nega­
tive x-direction from the same source at rest in the 
rocket frame. Show that the frequency of the wave 
obsetved in the laboratoty frame is

/ d F " ' " '+  '̂rel/
[wove moves in 

negative x-direction]

d Astronomers define the redsh ift z of light 
from a receding astronomical object by the formula

_fendt /obs
fobs

Here/nut is the frequency of the light measured in 
the frame in which the emitter is at rest and /^s the 
frequency observed in another frame in which the 
emitter moves directly away from the observet.

The most distant quasar reported as of 1991 has a 
tedshift z =  4.897. With what fraction of the speed 
of light is this quasar receding from us?
Reference: D. P. Schneider, M. Schmidt, and J. E. Gunn, Astronomi­
cal Journal, Volume 102, pages 8 3 7 -8 4 0  (1991).

L-6 transformation of angles
a  A meter stick lies at rest in the rocket frame 

and makes an angle (/)' with the x'-axis. Laboratory 
observers measure the x- andy-projections of the stick 
as it streaks past. W hat values do they measure for 
these projections, compared with the x '-  and ''-pro­
jections measuted by rocket observers? Therefore 
what angle (f) does the same meter stick make with 
the x-axis of the laboratory frame? What is the length 
of the “meter stick’’ as observed in the laboratory 
frame?

b Make the courageous assumption that the di­
rections of electric-field lines around a point charge 
transform in the same way as the directions of meter 
sticks that lie along these lines. (Electric field lines 
around a point charge are assumed to be infinite in 
length, so the length transformation of part a does not 
apply.) Draw qualitatively the electric-field lines due 
to an isolated positive point charge at rest in the rocket 
frame as observed in (1) the rocket frame and (2) the 
laboratory frame. What conclusions follow concern­
ing the time variation of electric forces on nearby 
charges at rest in the laboratory frame?
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L>7 transformation of y-velocity
A particle moves with uniform speed v'̂  =  ts.y'/ lS.t' 
along the;/'-axis of the rocket frame. Transform lS.y' 
and A /  to laboratory displacements A x , A y , and A /  
using the Lorentz transformation equations. Show 
that the x-component and the y-component of the 
velocity of this particle in the laboratory frame are 
given by the expressions

‘'rel

< ( 1

L-8 transformation of velocity 
direction

A particle moves with velocity v' in the x 'y ' plane of 
the rocket frame in a direction that makes an angle (f)' 
with the x'-axis. Find the angle (f) that the velocity 
vector of this particle makes with the x-axis of the 
laboratory frame. (Hint: Transform space and time 
displacements rather than velocities.) Why does this 
angle differ from that found in Exercise L-6 on trans­
formation of angles? Contrast the two results when 
the relative velocity between the rocket and labora­
tory frames is very great.

L-9 the headlight effect
A flash of light is emitted at an angle (f)' with respect 
to the x'-axis of the rocket frame.

a Show that the angle (f) the direction of motion 
of this flash makes with respect to the x-axis of the 
laboratory frame is given by the equation

cos (/) =
cos (/)' + rel

1 + (f)'

b Show that your answer to Exercise L-8 gives 
the same result when the velocity v ' is given the value 
unity.

c A particle at rest in the rocket ftame emits light 
uniformly in all directions. Consider the 50 percent of 
this light that goes into the forward hemisphere in the 
rocket frame. Show that in the labotatory frame this 
light is concentrated in a narrow forward cone of 
half-angle (f)g whose axis lies along the direction of 
motion of the particle. The half-angle (j)„ is the solu­
tion to the following equation:

cos (/)„ =

This result is called the headligh t effect.

L-10 the tilted meter stick
Note: This exercise uses the results of Exercise L-7.

A meter stick lying parallel to the x-axis moves in 
the y-direction in the laboratory frame with speed 
as shown in the figure (left).

a  In the rocket frame the stick is tilted upw ard in 
the positive x'-direction as shown in the figure 
(right). Explain why this is, first without using equa­
tions.

b Let the center of the meter stick pass the point 
X =  y =  x ' =  y ' =  0 at time t =  t '  =  0. Calculate 
the angle <f>' at which the meter stick is inclined to the 
x'-axis as observed in the rocket frame. Discussion: 
Where and when does the right end of the meter stick 
cross the x-axis as observed in the laboratory frame? 
Where and when does this event of right-end crossing 
occur as measured in the rocket frame? What is the 
direction and magnitude of the velocity of the meter 
stick in the rocket frame (Exercise L-7)? Therefore 
where is the right end of the meter stick at / '  =  0 , 
when the center is at the origin? Therefore . . .

EXERCISE L-10. Left: Meter stick moving transverse to its length as observed in the laboratory frame. 
Right: Meter stick as observed in rocket frame.
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L-11 the rising manhole
Note: This exercise uses the results of Exercise L-10.

A meter stick lies along the x-axis of the laboratory 
frame and approaches the origin with velocity . A 
very thin plate parallel to the xz laboratory plane 
moves upward in the y-direction with speed Vy as 
shown in the figure. The plate has a circular hole with 
a diameter of one meter centered on the y-axis. The 
center of the meter stick arrives at the laboratory 
origin at the same time in the laboratory frame as the 
rising plate arrives at the plane y =  0. Since the meter 
stick is Lorentz-contracted in the laboratory frame it 
will easily pass through the hole in the rising plate. 
Therefore there will be no collision between meter 
stick and plate as each continues its motion. However, 
someone who objects to this conclusion can make the 
following argument: “In the rocket frame in which 
the meter stick is at rest the meter stick is not con­
tracted, while in this frame the hole in the plate is 
Lorentz-contracted. Hence the full-length meter stick 
cannot possibly pass through the contracted hole in 
the plate. Therefore there must be a collision between 
the meter stick and the plate.’’ Resolve this paradox 
using your answer to Exercise L-10. Answer unequiv­
ocally the question, Will there be a collision between 
the meter stick and the plate?
Reference: R. Shaw, American Journal o f Physics, Volume 30, page 
72 (1962).

L-12 paradox of the
skateboard and the grid

A girl on a skateboard moves very fast, so fast that the 
relativistic length contraction makes the skateboard 
very short. On the sidewalk she has to pass over a grid. 
A man standing at the grid fully expects the fast short 
skateboard to fall through the holes in the grid. Y et to 
the fast girl her skateboard has its usual length and it 
is the grid that has the relativistic contraction. To her

the holes in the grid are much narrower than to the 
stationary man, and she certainly does not expect her 
skateboard to fall through them. Which person is 
correct? The answer hinges on the relativity of rigidity.

Idealize the problem as a one-meter rod sliding 
lengthwise over a flat table. In its path is a hole one 
meter wide. If the Lorentz contraction factor is ten, 
then in the table (laboratory) frame the rod is 10 
centimeters long and will easily drop into the one- 
meter-wide hole. Assume that in the laboratory frame 
the meter stick moves fast enough so that it remains 
essentially horizontal as it descends into the hole (no 
“ tipping’’ in the laboratory frame). Write an equa­
tion in the laboratory frame for the motion of the 
bottom edge of the meter stick assuming that t =  
/ '  =  0 at the instant that the back end of the meter 
stick leaves the edge of the hole. Eor small vertical 
velocities the rod will fall with the usual acceleration 
g. Note that in the laboratory frame we have assumed 
that every point along the length of the meter stick 
begins to fall simultaneously.

In the meter stick (rocket) frame the rod is one 
meter long whereas the hole is Lorentz-contracted to a 
10-centimeter width so that the rod cannot possibly 
fit into the hole. Moreover, in the rocket frame differ­
ent parts along the length of the meter stick begin to 
drop ar different times, due to the relativity of simul­
taneity. Transform rhe laboratory equations into the 
rocket frame. Show that the front and back of the rod 
will begin to descend at different times in this frame. 
The rod will “droop” over the edge of the hole in the 
rocket frame — that is, it will not be rigid. Will the 
rod ultimately descend into the hole in both frames? Is 
the rod really rigid or nonrigid during the experiment? 
Is it possible to derive any physical characteristics of 
the rod (for example its flexibility or compressibility) 
from the description of its motion provided by rela­
tivity?
Reference: W . Rindler, American Journal o f Physics, Volume 29, 
page 3 6 5 -3 6 6  (1961).

EXERCISE L-11. W ill  the “meter s t ic k ” pass 
through the “one-meter~diameter" hole w ith ­
out collision?
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L-13 paradox off the identically 
accelerated twins

N ote: This exercise uses spacetime diagrams, intro­
duced in Chapter 5.

Two fraternal twins, Dick and Jane, own identical 
spaceships each containing the same amount of fuel. 
Jane’s ship is initially positioned a distance to the right 
of Dick’s in the Earth frame. On their twentieth 
birthday they blast off at the same instant in the Earth 
frame and undergo identical accelerations to the right 
as measured by Mom and Dad, who remain at home 
on Earth. Mom and Dad further observe that the 
twins run out of fuel at the same time and move 
thereafter at the same speed v. Mom and Dad also 
measure the distance between Dick and Jane to be the 
same at the end of the trip as at the beginning.

Dick and Jane compare the ships’ logs of their 
accelerations and find the entries to be identical. 
However when both have ceased accelerating, Dick 
and Jane, in their new rest frame, discover that Jane is 
older than Dick! How can this be, since they have an 
identical history of accelerations?

a  Analyze a simpler trip, in which each spaceship 
increases speed not continuously but by impulses, as 
shown in the first spacetime diagram and the event 
table. How far apart are Dick and Jane at the begin­
ning of their trip, as observed in the Earth frame? 
How far apart are they at the end of their accelera­
tions? What is the final speed v (not the average 
speed) of the two spaceships? How much does each 
astronaut age along the worldline shown in the dia­
gram? (The answer is not the Earth time of 12 years.)

b The second spacetime diagram shows the two 
worldlines as recorded in a rocket frame moving with 
the final velocity of the two astronauts. Copy the 
figure. On your copy extend the worldlines of Dick 
and Jane after each has ceased accelerating. Label your 
figure to show that Jane ceased accelerating before 
Dick as observed in this frame. Will Dick age the 
same between events 0 and 3 in this frame as he aged 
in the Earth frame? Will Jane age the same between 
events 4 and 7 in this frame as she aged in the Earth 
frame?

c Now use the Lorentz transformation to find 
the space and time coordinates of one or two critical 
events in this final rest frame of the twins in order to 
answer the following questions

(1) How many years earlier than Dick did Jane 
cease accelerating?

(2) W hat is Dick’s age at event 3? (not the rocket 
time t '  oi this event!)

(3) What is Jane’s age at event 7?
(4) What is Jane’s age at the same time (in this 

frame) as event 3?
(5) What are the ages of Dick and Jane 20 years 

after event 3 , assuming that neither moves 
again with respect to this frame?

( 6) How far apart in space are Dick and Jane when 
both have ceased accelerating?

(7) Compare this separation with their initial (and 
final!) separation measured by Mom and Dad 
in the Earth frame.

d Extend your results to the general case in which 
Mom and Dad on Earth observe a period of identical 
continuous accelerations of the two twins.

(1) At the two start-acceleration events (the two 
events at which the twins start their rockets), 
the twins are the same age as observed in the 
Earth frame. Are rhey the same age at these 
events as observed in every rocket frame?

(2) At the two cease-acceleration events (the two 
events at which the rockets run out of fuel), are 
the twins the same age as observed in the Earth 
frame? Are they the same age at these events as 
observed in every rocket frame?

(3) The two cease-acceleration events are simulta­
neous in the Earth frame. Are they simulta­
neous as observed in every rocket frame? (No!) 
Whose cease-acceleration event occurs first as 
observed in the final frame in which both twins 
come to rest? (Recall the Train Paradox, Sec­
tion 3.4.)

(4) “ When Dick ceases accelerating, Jane is older 
than Dick.” Is this statement true according to 
the astronauts in their final rest frame? Is the 
statement true according to Mom and Dad in 
the Earth frame?

(5) Criticize the lack of clarity (swindle?) of the 
word when in the statement of the problem: 
‘‘However when both have ceased accelerat­
ing, Dick and Jane, in their new rest frame, 
discover that Jane is older than Dick!”

e Suppose that Dick and J ane both accelerate to 
the left, so that Dick is in front of Jane, but their 
history is otherwise the same. Describe the outcome of 
this trip and compare it with the outcome of the 
original trip.

f  Suppose that Dick and J ane both accelerate in 
a direction perpendicular to the direction of their 
separation. Describe the outcome of this trip and 
compare it with the outcome of the original trip.
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Earth Frame Observations

Event x-position Time
number (light years) (years)

0 0 0
1 1 4
2 3 8
3 6 12
4 12 0
5 13 4
6 15 8
7 18 12

ROCKET FRAME
EXERCISE L-13. Top: Worldlines of Dick and Jane as observed in the Earth frame of Mom and Dad. 
Bottom: Worldlines of Dick and Jane as observed in the “final" rocket frame in which both Dick and Jane 
come to rest after burnout.

Discussion: Einstein postulated that physics in a 
uniform gravitational field is, locally and for small 
particle speeds, the same as physics in an accelerated 
frame of reference. In this exercise we have found that 
two accelerated clocks separated along the direction of 
acceleration do not remain in synchronism as observed 
simultaneously in their common frame. Rather, the 
forward clock reads a later time (“runs faster”) than 
the rearward clock as so observed. Conclusion from 
Einstein’s postulate: Two clocks one above the other

in a uniform gravitational field do not remain in 
synchronism; rather the higher clock reads a later time 
(“runs faster”) than the lower clock. General relativ­
ity also predicts this result, and experiment verifies it. 
(Read about the patrol plane experiment in Section 
4.10.)

Reference: S. P. Boughn, American Journal o f Physics, Volume 57, 
pages 7 9 1 -7 9 3  (September 1989). Reference to general relativity 
result: Wolfgang Rindler, Essential Relativity (Springer, New York,
1977), pages 17 and 117.
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L-14 how do rods Lorenlz- 
contracl?

Note: Calculus is used in the solution to this exercise; 
so is the formula for Lorentz contracrion from Section 
5,8.

Laboratory observers measure rhe length of a mov­
ing rod lying along its direction of motion in the 
laboratory frame. Then the rod speeds up a little. 
Again laboratory observers measure its length, which 
they find to be a little shorter than before. They call 
this shortening of length Lorentz contraction. How 
did this shortening of length come about.^ As happens 
so often in relativity, the answer lies in the relativity of 
simultaneity.

First, how much shortening takes place when the 
rod changes from speed v to speed v +  dv} Let be 
the proper length of the rod when measured at rest. At 
speed V its laboratory-measured length L will be 
shorter than this by the Lorentz contraction factor 
(Section 5.8):

L =  (l

a Using calculus, show that when the rod speeds 
up from y to a slightly greater speed v +  dv, the 
change in length dL is given by the expression

dL =  -
L^vdv

(1 -  t̂ 2)l/2

The negative sign means that the change is a shorten­
ing of the rod. We want to explain this change in 
length.

How is the rod to be accelerated from v to v  dv̂ . 
Fire a rocket attached to the rear of the rod? No, Why 
not? Because the rocket pushes only against the rear of 
the rod; this push is transmitted along the rod to the 
front at the speed of a compression wave — very slow! 
We want the front and back to change speed “at the 
same time” (exact meaning of this phrase to be deter­
mined later). How can this be done? Only by 
prearrangement! Saw the rod into a thousand equal 
pieces and tap each piece in the forward direction with 
a mallet “at exactly 12 noon” as read off a set of 
synchronized clocks. To simplify things for now, set 
aside all but the front and back pieces of the rod. Now 
tap the front and back pieces ‘ ‘ at the same time. ’ ’ The 
change in length of the rod dL is then the change in 
distance between these two pieces as a result of the 
tapping. So much for how ro accelerare the “rod.”

Now the central question: What does it mean to 
tap the front and back pieces of the rod “at the same 
time”? To answer rhis question, ask another: What is 
our final goal? Answer: To account for the Lorentz

contraction of a fast-moving rod of proper length L„. 
More: We want a careful inspecror riding on the 
fast-moving rod to certify that it has the same proper 
length L(, as it did when it was at rest in the laboratory 
frame. To achieve rhis goal, the inspector insists that 
the pair of accelerating taps be applied to the front 
and back rod pieces at the same time in the current rest 
frame of the rod. Otherwise the distance between these 
pieces would not remain rhe same in the frame of the 
rod; the rod would change proper length. [Notice that 
in Exercise L-13 the taps occur at the same time in the 
laboratory (Earth) frame. This leads to results differ­
ent from those of the present exercise.}

b You are the inspector riding along with the 
front and back pieces of the rod. Consider the two 
events of tapping the front and back pieces. How far 
apart Ax' are these events along the x-axis in your 
(rocket) frame? How far apart A /' in time are these 
events in your frame? Predict how far apart in time Ar 
these events are as measured in the laboratory frame. 
Use the Lorentz transformation equation (L-10):

b it =  V yAx' +  y l \ t '

The relative velocity in equation (L-10) is just v, 
the current speed of the rod. In the laboratory frame is 
the tap on the rear piece earlier or later than the tap on 
the front piece?

Your answer to part b predicts how much earlier 
the laboratory observer measures the tap to occur on 
the back piece than on the front piece of the rod. Let 
the tap increase the speed of the back end by dv as 
measured in the laboratory frame. Then during labo­
ratory time Ar the back end is moving at a speed dv 
faster than the front end. This relative motion will 
shorten the distance between the back and front ends. 
After time interval At the front end receives the iden­
tical tap, also speeds up by dv, and once again moves 
at the same speed as the back end.

C Show that the shortening dL predicted by this 
analysis is

dL =  ~dvlS.t — —ybsx'vdv =  —vjL^dv 
Ljjdv

(1 - r ; 2)i/2

which is identical to the result of part a, which we 
wanted to explain. QED.

d Now start with the front and back pieces of the 
rod at rest in the laboratory frame and a distance L^ 
apart. Tap them repeatedly and identically. As they 
speed up, be sure these taps take place simultaneously 
in the rocket frame in which the two ends are currently 
at rest. (This requires you, the ride-along inspector, to
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resynchronize your rod-rest-frame clocks after each set 
of front-and-back taps.) Make a logically rigorous 
argument that after many taps, when the rod is mov­
ing at high speed relative to the laboratory, the length 
of the rod measured in the laboratory can be reckoned 
using the first equation given in this exercise.

e Now, by stages, put the rod back together. 
The full thousand pieces of the rod, lined up but not 
touching, are all tapped identically and at the same 
time in the current rest frame of the rod. One set of 
taps increases the rod’s speed from p top -h dp in the 
laboratory frame. Describe the time sequence of these 
thousand taps as observed in the laboratory frame. If 
you have studied Chapter 6 or the equivalent, answer 
the following questions: What kind of interval — 
timelike, lightlike, or spacelike— separates any pair 
of the thousand taps in this set? Can this pair of taps 
be connected by a light flash? by a compression wave 
moving along the rod when the pieces are glued back 
together? Regarding the “logic of acceleration,” is 
there any reason why we should not glue these pieces 
back together? Done!

f  During the acceleration process is the reglued 
rod rigid—  unchanging in dimensions —  as observed 
in the rod frame? As observed in the laboratory frame? 
Is the rigidity property of an object an invariant, the 
same for all observers in uniform relative motion? 
Show how an ideal rigid rod could be used to transmit 
signals instantaneously from one place to another. 
What do you conclude about the idea of a “rigid 
body” when applied to high-speed phenomena?
Reference: Edwin F. Taylor and A. P. French, American Journal of 
Physics, Volume 51, pages 889-893, especially the Appendix 
(1983).

L-15 the place where both agree
At any instant there is just one plane in which both the 
laboratory and the rocket clocks agree.

a By a symmetry argument, show that this plane 
lies perpendicular to the direction of relative motion. 
Using the Lorentz transformation equations, show 
that the velocity of this plane in the laboratory frame 
is equal to

=  —  [1 -  (1 -

b Does the expression for p,=,> seem strange? 
From our everyday experience we might expect that 
by symmetry the “plane of equal time” would move 
in the laboratory at half the speed of the rocket. Verify 
that indeed this is correct for the low relative velocities 
of our everyday experience. Use the first two terms of

the binomial expansion

(1 +  z)” ~  1 +  «z for |z| «  1

to show that for low relative velocity, p,=,' p^ /2 .
c W hat isp,=,’ for the extreme relativistic case in 

which f'rei 1? Show that in this case is com­
pletely different from ^rel/2.

d Suppose we want to go from the laboratory 
frame to the rocket frame in two equal velocity jumps. 
Try a first jump to the plane of equal laboratory and 
rocket times. Now symmetry does work: Viewed 
from this plane the laboratory and rocket frames 
move apart with equal and opposite velocities, whose 
magnitude is given by the equation in part a. A 
second and equal velocity jump should then carry us 
to the rocket frame at speed with respect to the 
laboratory. Verify this directly by using the Law of 
Addition of Velocities (Section L.7) to show that

P r . 1  —

P ,= ,' +  P ,= ,'

1 +  P ,= ,'P ,= ,'

L-16 Fizeau experiment
Light moves more slowly through a transparent ma­
terial medium than through a vacuum. Let t'medium 
represent the reduced speed of light measured in the 
frame of the medium. Idealize to a case in which this 
reduced velocity is independent of the wavelength of 
the light. Place the medium at rest in a rocket moving 
at velocity p„ ,̂ to the right relative to the laboratory 
frame, and let light travel through the medium, also 
to the right. Use the Law of Addition of Velocities 
(Section L.7) to find an expression for the velocity p of 
the light in the laboratory frame. Use the first two 
terms of the binomial expansion

(1 -f- z)” ~  1 -b «z for |z| «  1

to show that for small relative velocity between the 
rocket and laboratory frames, the velocity p of the 
light with respect to the laboratory frame is given 
approximately by the expression

P ^m edium ^  ^ rc lf f  ^m edium )

This expression has been tested by Fizeau using 
water flowing in opposite directions in the two arms of 
an interferometer similar (but not identical) to the 
interferometer used later by Michelson and Morley 
(Exercise 3-12).
Reference: H. Fizeau, Comptes rendus, Volume 33, pages 349-355 
(1851). A fascinating discussion (in French) of some central themes 
in relativity theory—delivered more than fifty years before Einstein’s 
first relativity paper.
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4.1 INVITATION TO CANOPUS
is one lifetime enough?

Approximately ninety-nine light-years from Earth lies the star Canopus. The Space 
Agency asks us to visit it, photograph it, and return home with our records.

“But that’s impossible, ” we object. “We have only a little over forty more years to 
live. We can spare at most twenty years for the outward trip, and twenty years for the 
return trip. Even if we could travel at the speed of light, we would need ninety-nine 
years merely to get there.’’

We are greeted with a smile and a cheery, “Think about our request a little longer, 
won’t you?”

4.2 STRIPPED-DOWN FREE-FLOAT 
FRAME

throw away most clocks and rods
Troubled thoughts fill us tonight. We dream about invariance of the spacetime 
interval (Chapter 3). In our dream we find ourselves aboard the rocket used to 
establish that result (Section 3.7). However, the numbers somehow have changed 
from meters of distance and meters of light-travel time to light-years of distance and 
years of time. Suddenly we see things in a new perspective. Three revelations crowd in 
on us.

121
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Retain a single string of 
Earth-linked clocks

The flash of light that got reflected did its work — revelation number one— in 
establishing the identity of the spacetime interval as measured in either of the two 
frames. We can remember invariance of the interval and forget about the reflected 
flash. Eliminating it, we eliminate mirror, photodetector and, most of all, those 
upward-extended arrays of printout clocks in rocket and laboratory frames whose only 
purpose was ro track the light flash.

The economy goes further. For us aboard the rocket, one reliable calendar clock is 
enough. As we start our trip from Earth in our dream, that clock by a happy 
coincidence shows noon on the Fourth of July, 2000 A.D. — and so do clocks at the 
Space Agency Center on Earth. We celebrate our starr by setting off a firecracker.

Later by 6 years —  for us —  and with a long shipboard program of research and 
study already completed, our rocket clock — still in our dreams —  tells us it is again 
noon on the Fourth of July and we set off a second firecracker. At that very instant, 
thanks to the particular speed we had chosen for our rocket relative to Earth, we are 
passing Lookout Station Number 8. Lonely lighthouse, it has in it little more than a 
sentry person and a printout clock, one of a series that we have been passing on our 
trip. They have been stationed out in space, fixed one light-year apart according to 
Earth measurements. Each clock is calibrated and synchronized to the reference clock 
on Earth using a reference flash as described in Section 2.6. The laboratory latticework 
of Figure 2-6 has been reduced to a single rightward-stretching string of lookout 
stations and their clocks. That we can thus simplify our vision of what is going on from 
three space dimensions to one is our first revelation, -vtsr-

4.3 FASTER THAN LIGHT?
choose your frame, then measure velocity!

Speed; Measure distance and time 
in same frame

Revelation number two strikes us as— still dreaming —  we pass Lookout Station 
Number 8, 8 light-years from Earth: What speed! We glance out of our window and 
see the lookout station clock print out “Fourth of July 2010 A.D.” —  10 years later 
than the Earth date of our departure. Our rocket clock reads 6 years. We are not 
shocked by the discrepancy in times for, apart from the change in scale from meters of 
light-travel time to years, the numbers are numbers we have seen before. Nor are we 
astonished at the identity of the spacetime interval as evaluated in the two very 
different frames. What amazes us is our speed. Have we actually covered a distance of 
8 light-years from Earth in a time of 6 years? Can this mean we have traveled faster 
than light?

We have often been told that no one and no object can go faster than light. Yet here 
we are — in our dream —  doing exactly that. Speed, yes, we suddenly say to ourselves, 
but speed in which frame? Ha! What inconsistency! We took the distance covered, 8 
light-years, in the Earth-linked laboratory frame, but the time to cover it, 6 years, in 
the rocket frame!

At this point we recognize that we can talk about our speed in one reference frame or 
our speed in the other frame, but we get nonsense when we mix together numbers 
from two distinct reference frames. So we reform. First we pick for reference frame the 
rocket. But then we get nothing very interesting, because we did not go anywhere with 
respect to the rocket— we just stayed inside.

' our speed \  
relative to I 

, rocket frame /

( distance we cover \  
with respect to rocket/

(time we take to cover\ 
it in rocket frame /

(0 light-years) 
(6 years)

=  0



In contrast, our speed relative to the Earth-linked reference frame, the extended 
laboratory, equals

4.4 ALL OF SPACE IS OURS! 1 2 3

' our speed \  
relative to 1 

, Earth frame/

/  distance we cover \  
\w ith respea to Earth/
/  time we take to cover\ 
\  it in Earth frame /

(8 light-years) 
(10 years)

— 0.8 light-speed

In other words we— and the rocket— travel, relative to Earth, at 80 percent of the 
maximum possible speed, the speed of light. Revelation number two is our discovery 
that speed in the abstract makes no sense, that speed has meaning only when referred 
to a clearly stated frame of reference. Relative to such a frame we can approach 
arbitrarily close to light speed but never reach it.

4.4 ALL OF SPACE IS OURS!
in one lifetime: go anywhere in the cosmos

Revelation number three strikes us as —  dreaming on —  we think more about passing 
Earth-linked lookout stations. Moving at 80 percent of light speed, we travel 8 
light-years in the Earth-linked frame in 6 years of our rocket time. Continuing at the 
same rate will get us to Canopus in 74 years of our rocket time. Better than 99 years, 
but not good enough.

Let’s use —  in imagination —  a faster rocket! We suddenly remember the super­
rocket discussed in demonstrating the invariance of the spacetime interval (Section 
3.8). Converting meters of distance and time to years, we realize that traveling in the 
super-rocket would bring us to Earth-linked Lookout Station Number 20, 20 Earth- 
frame light-years from Earth, in 6 years of our rocket time. When passing this station, 
we can see that this station clock reads 20.88 years. Therefore in the Earth-linked 
frame out super-rocket speed amounts to 20/20.88 =  0.958 light speed. Continuing 
at the same speed would bring us to Canopus in 29.7 years of our rocket time. This is 
nearly short enough to meet our goal of 20 years.

Revelation number three gives us a dizzying new sense of freedom. By going fast 
enough we can get to Canopus in five minutes of our rocket time if we want! In fact, no 
matter how far away an object lies, and no matter how short the time allotted to us, 
nothing in principle stops us from covering the required distance in that time. We have 
only to be quite careful in explaining this new-found freedom to our Space Agency 
friends. Yes, we can go any distance the agency requires, however great, provided they 
specify the distance in the Earth-linked reference frame. Yes, we can make it in any 
nonzero time the agency specifies, however short, provided they agree to measure time 
on the rocket clock we carry along with us.

To be sure, the Earth-linked system of lookout stations and printout clocks will 
record us as traveling at less than the speed of light. Lookouts will ultimately complain 
to the Space Agency how infernally long we take to make the trip. But when our Space 
Agency friends quiz the lookouts a bit more, they will have to confess the truth; When 
they look through our window as we shoot by station after station, they can see that our 
clock reads much less than theirs, and in terms of our own rocket clock we are meeting 
the promised time for the trip.

Our dream ends with sunlight streaming through the bedroom window. We lie 
there savoring the three revelations; economy of description of two events in a reference 
frame stripped down to one space dimension, speed defined always with respect to a

Five minutes to Canopus- 
or to any star!
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specified reference frame and thus never exceeding light speed, and freedom to go 
arbittarily far in a lifetime.

4.5 FLIGHT PLAN
out and back in 40 years to meet 
our remote descendents

Round trip: 202 Earth years

Round trip: 40 astronaut years

Wide awake now, we face yesterday’s question: Shall we go to Canopus, 99 light-years 
distant, as the Space Agency asks? Yes. And yes, we shall live to retutn and repott.

We take paper and pencil and sketch our plan. The numbers have to be different 
from those we dteamed about. Trial and error gives us the following plan: After a 
preliminary run to get up to speed, we will zoom past Earth at 99/101 =  0.9802 light 
speed. We will continue at that speed all the 99 light-years to Canopus. We will make 
a loop around it and record in those few minutes, by high-speed cameta, the features of 
that strange star. We will then retutn at unalteted speed, flashing by our finish line 
without any letup, and as we do so, we will toss out our bundle of records to colleagues 
on Earth. Then we will slow down, turn, and descend quietly to Earth, our mission 
completed.

The fitst long run takes 101 Earth years. We have already decided to travel at a 
speed of 99/101, or 99 light-years of distance in 101 years of time. Going at that 
speed for 101 Earth years, we will just cover the 99 light-years to Canopus. The return 
trip will likewise take 101 Earth years. Thus we will deliver our records to Earth 202 
Earth-clock years after the start of our trip.

Even briefer will be the account of our trip as it will be perceived in the free-float 
rocket frame. Relative to the ship we will not go anywhere, either on the outbound or 
on the return trip. But time will go on ticking away on our shipboard clock. Moreover 
our biological clock, by which we age, and all other good clocks carried along will tick 
away in concord with it. How much time will that rocket clock rack up on the 
outbound trip? Twenty years. How do we know? We reach this answer in three steps. 
First, we already know from records in the Earth-linked laboratory frame that the 
spacetime interval —  the proper time— between departure from Earth and artival at 
Canopus will equal 20 years:

Laboratory Laboratory
(interval)^ =  (time separation)^ — (space separation)^

=  (101 years)^ — (99 years)^
=  10,201 years^ — 9801 years^
=  400 years^ =  (20 years)^

Second, as the saying goes, “interval is interval is interval” : The spacetime interval 
is invariant between frames. The interval as registered in the rocket frame must 
therefore also have this 20-year value. Third, in the rocket frame, separation between 
the two events (depatture ftom Earth and atrival at Canopus) lies all in the time 
dimension, zero in the space dimension, since we do not leave the rocket. Therefore 
separation in rocket time itself between these two events is the proper time and must 
likewise be 20 years:

R ocket R ocket

(interval)^ =  (time separation)^ — (space separation)^
=  (time separation)^ — (zero)^
=  (rocket time)^ =  (proper time)^
=  (20 years)^
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We boil down our flight plan to bare bones and take it to the Space Agency for 
approval: Speed 99/101 =  0.9802 light speed; distance 99 light-years out, 99 
light-years back; time of return to Earth 202 years after start; astronaut’s aging during 
trip, 40 years. The responsible people greet the plan with enthusiasm. They thank us 
for volunteering for a mission so unprecedented. They ask us to take our proposal 
before rhe Board of Direcrors for final approval. We agree, not realizing what a 
hornets’ nest we are walking into.

The Board of Direcrors consists of people from various walks of life, set up by 
Congress to assure that major projects have support of the public at large. The media 
have reported widely on our proposal in the weeks before we meet with the board, and 
many people with strong objecrions to relativity have written to voice their opinions. A 
few have met with board members and talked to them at length. We are unaware of 
this as we enter rhe paneled board room.

At the request of the chairman we summarize our plan. The majority appear to 
welcome it. Several of their colleagues, however, object.

4.6 TWIN PARADOX
a kink in the path explains the difference

“Your whole plan depends on relativity,’’ stresses James Fastlane, “but telativity is a 
swindle. You can see for yourself that it is self-contradictory. It says that the laws of 
physics are identical in all free-float frames. Very well, here’s your rocket frame and 
here’s Earth frame. You tell me that identical clocks, started near Earth at identical 
times, each in one of these free-float frames, will read very different time lapses. You 
go away and return only 40 years older, while we and our descendants age 202 years. 
But if there’s any justice, if relativity makes any sense at all, it should be equally 
possible to regard you as the stay-at-home. Relative to you, we speed away in the 
opposite direction and return. Hence we should be younger than you when we meet 
again. In contrast, you say you will be younger than we are. This is a flat contradiction. 
Nothing could show more conclusively that neither result can be right. Aging is aging. 
It is impossible to live long enough to cover a distance of 99 light-years twice— going 
and coming. Forget the whole idea.”

“Jim ,” we reply, “your description is the basis for the famous Twin Paradox, in 
which one twin stays on Earth while the other takes the kind of round rrip we have 
been describing. Which twin is older when they come together again? I would like to 
leave this question for a minure and consider a similar trip across the United States.

“We all know, Jim, that every July you drive straight north on Interstate Highway 
35 from Laredo, Texas, on the Mexican border, to Duluth, Minnesota, near the 
Canadian border. Your tires roll along a length of roadway equal to 2000 kilometers 
and the odometer on your car shows it.

‘ 'I too drive from Laredo to Duluth, but last year I had to make a stop in Cincinnati, 
Ohio, on the way. I drove northeast as straight as I could from Laredo to Cincinnati, 
1400 kilometers, and northwest as straight as I could from Cincinnati to Duluth, 
another 1400 kilometers. Altogether, my tires rolled out 2800 kilometers. When we 
left Laredo you could have said that my route was deviating from yours, and I could 
have said with equal justice that yours was deviating from mine. The great difference 
between our travels is this, that my course has a sharp turn in it. That’s why my 
kilometerage is greater than yours in the ratio of 2800 to 2000.”

Fastlane interrupts: “Are you telling me that the turn in the rocket trajectory ar 
Canopus explains the smaller aging of the rocket traveler? The turn in your trip to 
Duluth made your travel distance longer, not shorter.”

Which twin travels?

Curved path in space  
is a longer path



Astronaut who turns around 
ages less . . .
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“That is the difference between path length in Euclidean space geometry and 
wrisrwatch time in Lorentz spacetime geometry,” we reply. “In Euclidean geometry 
the shortest path length between two points is achieved by the traveler who does not 
change direction. All indirect paths are longer than this minimum. In spacetime the 
greatest aging between two events is experienced by the traveler who does not change 
direction. For all travelers who change direction, the total proper time, the total 
wristwatch time, the total aging is less than this maximum.

“The distinction between distance in Euclidean geometry and aging in spacetime 
comes ditectly from the contrast between plus sign in the expression for distance 
between two locations and minus sign in the expression for interval between two 
events. In going to Duluth by way of Cincinnati I use the plus sign:

/  northward V  /  eastward 
separation: 1 _|_ I separation: 1 
Laredo to I » 1 Laredo to I 

\  Cincinnati /  T \  Cincinnati /

( distance: V  
Laredo to 1 =  

Cincinnati /

“Contrast this with motion in spacetime. In analyzing my trip to Canopus, I use the 
minus sign:

. because of a minus sign! (proper time:' 
Earth to 
Canopus ,

( rocket time:' 
Earth to 
Canopus ,

(Earth time:' 
Earth to 
Canopus ,

(Earth distance:' 
Earth to 
Canopus ,t

“The contrast between a plus sign and a minus sign: This is the distinction between 
distance covered during travel in space and time elapsed — aging— during travel in 
spacetime."

4 .7 LORENTZ CONTRACTION
go a shorter distance in a shorter time

Canopus much closer for astronaut

As James Fastlane ponders this response. Dr. Joanne Short breaks in. “The Twin 
Paradox is not the only one you have to explain in order to convince us of the 
correctness of your analysis. Look at the outward trip as observed by you yourself, the 
rocket traveler. You reach Canopus after just 20 years of your time. Yet we know that 
Canopus lies 99 light-years distant. How can you possibly cover 99 light-years in 20 
years?”

“That is exactly what I dreamed about, Joanne!” we reply. “First of all, it is 
confusing to combine distances measured in one reference frame with time measured 
in another reference frame. The 99-light-year distance to Canopus is measured with 
respect to the Earth-linked frame, while the 20 years recorded on the outward 
traveler’s clock refers to the rocket frame. No wonder the result appears to imply a rate 
of travel faster than light. Why not take what I paid for fuel for my car last week and 
divide it by the number of gallons you bought today foryo«rcar, to figure the cost of a 
gallon of fuel? A crazy, mixed-up, wrong way to work out cost— but no crazier than 
that way to figure speed!

“But your question about time brings up a similar question about distance: distance 
between Earth and Canopus measured in the frame in which they are at rest does not 
agree with the distance between them measured from a rocket that moves along the 
line connecting them.
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“Any free-float frame is as good as any other for analyzing motion — that is the 
Principle of Relativity! So think of the entire outward trip in terms of rocket measure­
ments. At the starting gun (or firecracker) Earth is rushing past the rocket at speed 
99/101. Twenty years later Canopus arrives at the rocket, Canopus also traveling at 
that speed, 99/101 in that rocket frame. This means that for the rocket traveler the 
Eatth-Canopus distance is only about 20 light-years. In fact it is just the fraction 
(99/101) of 20 light-years, so that at speed 99/101 this distance is covered in exactly 
20 years.’’

“Of course. We are dealing with Lorentz con traction ,” huffs Professor Bright, 
who thinks any objection to relativity is a waste of time. He has no head for politics, so 
does not appreciate how important it is for the public to accept the expenditures 
proposed for this project.

He continues, ‘ 'Think of a very long stick lying with one end at Eatth, the othet end 
at Canopus. Each observer, with the help of colleagues, measures the position of the 
two ends of this stick at the same time in his or her frame. By this means the outward 
rocket traveler measures a shorter length of the stick — a smaller Earth -  Canopus 
distance — than does an observer in the Earth-linked frame in which the stick lies at
test.

“The factor by which the stick appears contracted in the rocket frame is just the 
same as the ratio of rocket time to Earth time for the outwatd trip. This ratio is (20 
years)/(101 years). Hence the rocket observer measures the Earth -  Canopus distance 
to be (99 light-years)(20/101) =  19.6 light-years — just a bit less than 20 light- 
years, as you said.

“Everybody has a satisfactory picture: The astronaut can get to Canopus in 20 years 
of rocket time because the astronaut’s measurements show Canopus to be slightly less 
than 20 light-years distant. We on Earth agree that the time lapse on the rocket clock is 
20 years, but our ‘explanation’ rests on the invariance of the interval between the 
events of departure from Earth and arrival at Canopus.” Professor Bright pounds the 
table: “Why are you giving this poor astronaut such a hard time, when relativity is so 
utterly simple?” He is surprised by the outburst of laughter from other board 
members and the audience in the room.

Lorentz contraction

4.8 TIME TRAVELER
visit the future, don't come back.

Laura Long has been thoughtfully following the argument. She comments, “You 
know, we have been discussing you as a space travelet. But you are a time traveler as 
well. Do you realize that by traveling to Canopus and back at 99/101 of light speed, 
you journey six generations forward in time: 202 years at 33 years per generation? So 
you will be able to visit your great-great-great-great-great-grandchildren at a cost of 
only 40 years of your life.”

“Yes, I did think of that,” we reply. “Time and space are not so different in this 
respect. Just as we can travel to as great an Earth-linked distance as we want in as short 
a rocket time as we want, so we can also ttavel as fat forward into Earth’s future as we 
wish.

“While I was trying various numbers in making up the proposed plan, I realized 
that if we traveled not at 99/101 light speed but at 9999/10,001 light speed, then a 
round trip would take not 40 rocket years but only 3.96 rocket years and 198 Earth 
years. Ten such round trips will age us 39.6 years and bring us back finally at an Earth 
time about two thousand years in the future, or some year in the fortieth century. That

Travel to Earth's future
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Time travel is one way

is not six generations ahead, but sixty generations, an additional time equal to one 
third of recorded history on Earth.”

“Why stop there?” pursues Laura Long excitedly. “Why not go even faster, make 
more round trips, and learn the ultimate fate of Earth and its solar system —  or even 
the still more remote future of the Universe as a whole? Then you could report back to 
us whether the Universe expands forever or ends in a crunch.”

“Sorry, but no report back to our century is possible,” smiles Professor Bright. 
“There are differences between travel in time and travel in space. To begin with, we 
can stand still on Earth if we choose and go nowhere in space with respect to that frame. 
Concerning travel through time, however, we have no such choice! Even when we 
stand stock still on Earth, we nevertheless travel gently but inevitably forward in time. 
Time proceeds inexorably!

“Second, time travel is one way. You may be able to buy a round-trip ticket to 
Canopus, but you can get only a one-way ticket to the fortieth century. You can’t go 
backward in time. Time won’t reverse.”

Turning to us he adds, “As for the fate of the solar system and the end of the 
Universe, our descendants may meet you there as fellow observers, but we ourselves 
will have to bid you a fitm and final ‘good-bye’ as you leave us on any of the trips we 
have been discussing. The French au revoir— until we meet again —  will not do.”

4.9 RELATIVITY OF SIMULTANEITY
we turn around; our changing colleagues say 
Earth's clock flies forward

Rocket observer: 
Fewer Earth-clock ticks 

on outward trip . . .

also fewer Earth-clock ticks 
on return trip

By this time James Fastlane has gotten his second wind. “I am still stuck in this Twin 
Paradox thing. The time for the outward trip is less as measured in the rocket frame 
than as measured in the Earth frame. But if relativity is correct, every free-float frame is 
equivalent. As you sit on the rocket, you feel yourself to be at rest, stationary, 
motionless; you measure our Earth watch-station clocks to be zipping by you at high 
velocity. Who cares about labels? For you these Earth clocks are in motion! Therefore 
the time for the ourwatd trip should be less as measured on the (‘moving’) Earth clock 
than as measured on your (‘stationary’) rocket clock.”

We nod assent and he continues. “Nothing prevents us from supposing the 
existence of a series of rocket lookout stations moving along in step with your rocket 
and strung out at separations of one light-year as measured in your rocket frame, all 
with clocks synchronized in your rocket frame and running at the same rate as your 
rocket clock. Now, as Earth passes each of these rocket lookout stations in turn, won’t 
those stations read and record the times on the passing Earth clock to be less than their 
own times? Otherwise how can relativity be correct?”

“Yes, your prediction is reasonable,” we reply.
“And on the return trip will not the same be true: Returning-rocket lookout 

stations will measure and record time lapses on the passing Earth clock to be less than 
on their own clocks?”

“That conclusion is inevitable if relativity is consistent.”
“Aha!” exclaims Mr. Fastlane, “Now I’ve got you! If Earth clock is measured by 

rocket lookout stations to show smaller time lapses during the outward trip —  and also 
during the return trip — then obviously total Earth time must be less than rocket 
round-trip time. But you claim just the opposite: that total rocket time is less than 
Earth time. This is a fundamental contradiction. Your relativity is wrong!” Folding his 
arms he glowers at us.
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There is a long silence. Everyone looks at us except Professor Bright, who has his 
head down. It is hard to think with all this attention. Yet our mind runs over the trip 
again. Going out . . . coming back . . . turning around . . . that’s it!

“All of us have been thinking the wrong way!’’ we exclaim. “We have been talking 
as if there is only a single rocket frame. True, the same vehicle, with its traveler, goes 
out and returns. True, a single clock makes the round trip with the traveler. But this 
vehicle turns around— reverses its direction of travel —  and that changes everything.

“Maybe it’s simpler to think of two rockets, each moving without change of 
velocity. We ride on the first rocket going out and on the second rocket coming back. 
Each of these two is really a rocket frame: each has its own long train of lookout stations 
with recording clocks synchronized to its reference clock (Figure 4-1). The traveler can 
be thought of as 'jumping trains’ at Canopus —  from outward-bound rocket frame to 
inward-bound rocket frame —  carrying the calendar clock.

“Now follow Mr. Fastlane’s prescription to analyze the trip in the rocket frame, but 
with this change: make this analysis using two rocket frames —  one outward bound, 
the other inward bound.

“It is 20 yeats by outward-rocket time when the traveler arrives at Canopus. That is 
the reading on all lookour station clocks in that outward-rocket frame. One of rhose 
lookout stations is passing Earth when this rocket time arrives. Its clock, synchronized 
to the clock of the outward traveler at Canopus, also reads 20 years. What time does 
that rocket lookout-station guard read on the passing Earth clock? For the rocket 
observer Earth clock reads less time by the same factor that rocket clocks read less time 
(20 years at arrival at Canopus) for Earth observers (who read 101 years on their own 
clocks). This factor is 2 0/101. Elence for the outward-rocket observer the Earth clock 
must read 20/101 times 20 years, or 3.96 years.’’

“What!” explodes Fastlane. “According to your plan, the turnaround at Canopus 
occurs at 101 years of Earth time. Now you say this time equals less than 4 years on 
Earth clock.”

“No sir, I do not say that,” we reply, feeling confident at last. “ I did say that at the 
same time as the outgoing rocket arrives at Canopus, Earth clock reads 3.96 years as 
measured in that outgoing rocket frame. An equally true statement is that at the same 
time as the outgoing rocket arrives at Canopus, Earth clock reads 101 years as 
measured in the Earthbound frame. Apparently observers in different reference frames 
in relative motion do not agree on what events occur at the same time when these events 
occur far apart along the line of relative motion.”

Once again Professor Bright supplies the label. “Yes, that is called relativity  o f 
sim ultaneity . Events that occur at the same time— simultaneously— judged from

Astronaut jumps from outgoing 
frame to returning frame

Outgoing rocket:
As it arrives at Canopus, 
Earth clock reads 3 .96  years

return-rocket lookout stations

-V....V --V -....V..... V --V -....V - -V-....V -< ^--V -.....
-A-....A --A --A -> -

outgoing-rocket lookout stations

O .........................Q --------------------O .......................... - o

Earth Earth lookout stations Canopus

FIGURE 4-1. Schematic plot in the Earth-linked fram e showing the outgoing rocket a n d  the 
return rocket used in the round trip  between E arth  a n d  Canopus. The two rockets meet a t Canopus, 
where the traveler jumps from outgoing rocket to return rocket. Each reference frame has its own string of 
lookout stations, at rest and synchronized in that frame, shown by small squares, triangles, and inverted 
triangles. In this figure the outgoing and return rocket lines of motion are displaced vertically for purposes of 
analysis; tn reality, all motion lies along the single line between Earth and Canopus. The figure is not to 
scale!
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Returning rocket: 
As it leaves Canopus, 

Earth clock reads 198.04 years

Forward “jump” in Earth clock 
results from frame change

one free-float frame but far apart along the line of relative motion do not occur 
simultaneously as judged from another free-float frame.

“As an example of relativity of simultaneity, consider either chain of lookout 
stations strung along the line of relative motion. If all clocks in the lookout stations of 
one frame strike exactly at noon in that frame, these strikes are not simultaneous as 
measured in another frame in relative motion with respect to the first. This is called 
relative synchronization o f clocks.

“Incidentally, most of the so-called ‘paradoxes’ of relativity, one of which we are 
considering now, turn on misconceptions about relativity of simultaneity.”

Dr. Short breaks in. “What about the returning rocket? What time on the Earth 
clock will the returning rocket lookout station measure as the traveler starts back?” 

“That shouldn’t be too difficult to figure out,” we reply. “We know that the clock 
on the returning rocket reads 40 years when we arrive home on Earth. And the Earth 
clock reads 202 years on that return. Both of these readings occur ar the same place 
(Earth), so we do not need to worry about relativity of simultaneity of that reading. 
And during the return trip Earth clock records less elapsed time than rocket clocks’ 20 
years by the same factor, 20/101, or a total elapsed time of 20 X 20/101 =  3.96 
years according ro return rocket observations. Therefore at the earlier turnaround, 
return rocket observers will see Earth clock reading 202 — 3.96 =  198.04 years.” 

“Wait a minute!” bellows Eastlane. “First you say that the rocket observer sees the 
Earth clock reading 3.96 years at turnaround in the outward-bound frame. Now you 
say that the rocket observer sees the Earth clock read 198.04 years at turnaround in the 
inward-bound frame. Which one is right?”

“Both are right,” we reply. “The rwo observations are made from two different 
frames. Each of these frames has a duly synchronized system of lookout-station clocks, 
as does the Earth-linked frame (Figure 4-1). The so-called Twin Paradox is resolved 
by noticing that between the Earth-clock reading of 3.96 years, taken from the 
outward rocket lookout station at turnaround and the Earth-clock reading of 198.04 
years, taken by the returning-rocket lookout station at turnaround, there is a difference 
of 194.08 years.

“This ‘jump’ appears on no single clock but is the result of the traveler changing 
frames at Canopus. Yet this jump, or difference, resolves the paradox: For rhe traveler, 
the Earth clock reads small time lapses on the outward leg —  and also small time 
lapses on the return leg —  but it jumps way ahead at turnaround. This jump accounts 
for the large value of Earth-aging during the trip: 202 years. In conrrast rhe traveler 
ages only 40 years during the trip (Table 4-1).

“And notice that the traveler is unique in the experience of changing frames; only 
the traveler suffers the terrible jolt of reversing direction of motion. In contrast, the

OBSERVATIONS OF EVENTS ON CANOPUS TRIP

Event

Time measured 
in Earth-linked 

frame
Time measured 

by traveler

Earth-clock reading observed by 
outgoing-rocket return-rocket 
lookout stations lookout stations 
passing Earth passing Earth

Depart Earth 0 years 0 years 0 years
Arrive Canopus 101 years 20 years 20 years X 20/101 

=  3.96 years
Depart Canopus 101 years 20 years 3.96 years 202 -  3.96 

=  198.04 years
Arrive Earth 202 years 40 years 202 years
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Earth observer stays relaxed and comfortable in the same frame during the astronaut’s 
entire trip. Therefore there is no symmetry between rocket traveler and Earth dweller, 
so no genuine contradiction in their differing time lapses, and the story of the twins is 
not a paradox.

“ In fact, the observer in each of the three frames — Earth-linked, outward-rocket, 
and inward-rocket— has a perfectly consistent and nonparadoxical interpretation of 
the sequence of events. However, in accounting for disagreements between his or her 
readings and those of observers in other free-float frames, each observer infers some 
misbehavior of measuring devices in these other frames. Each observes less elapsed 
time on clocks in the other frame than on his or her own clocks (time stretching or time 
dilation). Each thinks that an object lying along the line of relative motion and at rest 
in another frame is contracted (Lorentz contraction). Each thinks that lookout-station 
clocks in other frames are not synchronized with one another (relative synchronization 
of clocks). As a result, each cannot agree with other observers as to which events far 
apart along the line of relative motion occur at the same time (relativity of simultane­
ity).’’

“Boy,” growls Fastlane, “all these different reference frames sure do complicate the 
story!’’

“Exactly!” we exclaim. “These complications arise because observations from any 
one frame are limited and parochial. All disagreements can be bypassed by talking 
only in the invariant language of spacetime interval, proper time, wristwatch time. 
The proper time from takeoff from Earth to arrival at Canopus equals 20 years, 
period. The proper time from turnaround at Canopus to rearrival at Earth equals 20 
years, period. The sum equals 40 years as experienced by the astronaut, period. On the 
Earth clock, the proper time between departure and return is 202 years, period. End of 
story. Observers in all free-float frames reckon proper times— spacetime intervals 
between these events —  using their differing space and time measurements. However, 
once the data are translated into the common language of proper time, every observer 
agrees. Proper times provide a universal language independent of reference frame.”

All observers agree on result, 
disagree on reason

Spacetime interval is 
universal language

4.10 EXPERIMENTAL EVIDENCE
objects large and small, slow and fast: 
many witnesses for the Canopus trip

Alfred Missouri has remained silent up to this point. Now he declares, “All this theory 
is too much for me. I won’t believe a word you say unless you can show me an 
experimental demonstration.”

We reply, “Atomic clocks have been placed on commercial airliners and carried 
around Earth, some in an eastward direction, others in a westward direction. In each 
case the airliner clocks were compared with reference clocks at the U.S. Naval 
Observatory before and after their trips. These clocks disagreed. Results were consist­
ent with the velocity-related predictions of special relativity.

“This verification of special relativity has two minor difficulties and a major one. 
Minor difficulties: (1) Each leg of a commercial airliner’s trip may be at a different 
speed, not always accurately known and for which the time-stretching effect must be 
separately calculated. Also, temperature and pressure effects on airborne clocks are 
hard to control in a commercial airliner. (2) More fundamentally. Earth rotates, 
cartying the reference Naval Observatory clocks eastward around the center of Earth. 
Earth center can be regarded as the inertial point in free-float around Sun. With

“Airliner” test of twin effect
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DO WE NEED GENERAL RELATIVITY? NO!
The group takes a break and mills around the conference room, chatting and 
eating refreshments. Joanne Short approaches us juggling coffee, a donut, 
and her notes.

‘‘I didn’t want to embarrass you in public,” she says, “ but isn’t your plan 
faulty because of the turnaround? You can’t be serious about leaping from 
one high-speed rocket to another rocket going in the opposite direction. That 
means certain death! Be realistic: You and your rocket will have to slow down 
over some time period, come to rest at Canopus, then speed up again, this 
time headed back toward Earth. During this change of velocity you will be 
thrown against the front of the rocket ship, as I’m thrown when I slam on my 
car brakes. Release a test particle from rest and it will hurtle forward! Surely 
you are not in an inertial (free-float) frame. Therefore you cannot use special 
relativity in your analysis of this time period. What does that do to your 
description of the ‘jump ahead’ of Earth clocks as you slow down and speed 
up again? Don’t you need general relativity to analyze events in accelerated 
reference frames?”

“Oh yes, general relativity can describe events in the accelerated frame,” 
we reply, “ but so can special relativity if we take it in easy steps! I like to think 
of a freight yard with trains moving at different speeds along parallel tracks. 
Each train has its own string of recording clocks along its length, each string 
synchronized in that particular train frame. Each adjacent train is moving at a 
slightly different speed from the one next to it. Now we can change frames by 
walking a c ro ss  the trains, stepping from the top of one freight car to the top of 
the freight car rolling next to it at a  slightly different speed.

“Let these trains become rocket trains in space. Each train then has an 
observer passing Earth as we step on that train. Each observer, by prearran­
gement, reads the Earth clock a t the sa m e  tim e that we step onto his train (‘at 
the same time’ as recorded in that frame). When you assemble all these data 
later on, you find that the set of observers on the sequence of trains see the 
Earth clock jumping forward in time much faster than would be expected. The 
net result is similar to the single horrible jerk as you jump from the outgoing 
rocket to the incoming rocket.

“ Notice that it takes a whole set of clocks in different frames, all reading the 
single Earth clock, to establish this result. So there is never any contradiction 
between a single clock in one frame and a  single clock in any other frame. In 
this case special relativity can do the job just fine.”

The directors reassemble and Joanne Short, smiling, takes her place with 
them.

respect to this center, one airborne clock moves even faster eastward than Earth’s 
surface, while the other one— heading west with respect to the surface— with respect 
to Earth’s center also moves eastward, but more slowly. Taking account of these 
various relative velocities adds further complication to analysis of results.

“We overcome these two minor difficulties by having an airplane fly round and 
round in circles in the vicinity of a single ground-based reference atomic clock.
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Then —  to a high accuraq'— only relative motion of these two clocks enters into the 
special-relativity analysis.

On N ovember 22, 1975,aU .S .N  avy P3 C antisubmarine patrol plane flew back 
and forth for 15 hours at an altitude of 25,000 to 35,000 feet (7600 to 10,700 
meters) over Chesapeake Bay in an experiment arranged by Carroll Alley and collabo­
rators. The plane carried atomic clocks that were compared by laser pulse with 
identical clocks on the ground. Traveling at an average speed of 270 knots (140 
meters per second), the airborne clocks lost an average of 5.6 nanoseconds =  5.6 X 
10“  ̂ seconds due to velocity-related effects in the 15-hour flight. The expected 
special-relativity difference in clock readings for this relative speed is 5.7 nanoseconds. 
This result is remarkably accurate, considering the low relative velocity of the two 
clocks: 4.7 X 10“  ̂ light speed.

“The major difficulty with all of these experiments is this: A high-flying airplane is 
significantly farther from Earth’s center than is the ground-based clock. Think of an 
observer in a helicopter reading the clocks of passing airplanes and signaling these 
readings for comparison to a ground-based clock directly below. These two clocks — 
the helicopter clock and the Earthbound clock— are at rest with respect to one 
another. Are they in the same inertial (free-float) frame? The answer is No.

“We know that a single inertial reference frame near Earth cannot extend far in a 
vertical direction (Section 2.3). Even if the two clocks — helicopter and Earthbound 
—  were dropped in free fall, they could not both be in the same inertial frame. 
Released from rest 30,000 feet one above the other, they would increase this relative 
distance by 1 millimeter in only 0.3 second of free fall — too rapid a change to be 
ignored. But the experiment went on not for 0 .3  second b u t for 15 hours!

“Since the helicopter clock and Earthbound clock are not in the same inertial frame, 
their behavior cannot be analyzed by special relativity. Instead we must use general 
relativity —  the theory of gravitation. General relativity predicts that during the 
15-hour flight the higher-altitude clock in the Chesapeake Bay experiment will record 
greater elapsed time by 52.8 nanoseconds due to the slightly reduced gravitational 
field at altitudes at which the plane flew. From this must be subtracted the 5.7 
nanoseconds by which the airborne clock is predicted to record less elapsed time due to 
effects of relative velocity. These velocity effects are predicted by both special relativity 
and general relativity and were the only results quoted above. The overall predicted 
result equals 52.8 — 5.7 =  47.1 nanoseconds net gain by the high-altitude clock 
compared with the clock on the ground. Contrast this with the measured value of 47.2 
nanoseconds.

“Hence for airplanes flying at conventional speeds and conventional altitudes, 
tidal-gravitational effects on clocks can be greater than velocity-dependent effects to 
which special relativity is limited. In fact, the Chesapeake Bay experiment was 
conducted to verify the results of general relativity: The airplane pilot was instructed to 
fly as slowly as possible to reduce velocity effects! The P3C patrol plane is likely to stall 
below 200 knots, so a speed of 270 knots was chosen.

“In all these experiments the time-stretching effect is small because the speed of an 
airplane is small compared to the speed of light, but atomic clocks are now so accurate 
that these speed effects are routinely taken into account when such clocks are brought 
together for direct comparison.”

Professor Bright chimes in. “What the astronaut says is correct: We do not have 
large clocks moving fast on Earth. On the other hand, we have a great many small 
clocks moving very fast indeed. When particles collide in high-speed accelerators, 
radioactive fragments emerge that decay into other particles after an average lifetime 
that is well known when measured in the rest frame of the particle. When the 
radioactive particle moves at high speed in the laboratory, its average lifetime is 
significantly longer as measured on laboratory clocks than when the patticle is at rest. 
The amount of lengthening of this lifetime is easily calculated from the particle speed 
in the same way the astronaut calculates time stretching on the way to and from

“Circling airplane” test 
of twin effect

Trouble: Large frame 
is not inertial

Solution: Use general relativity

“High-speed radioactive particle' 
test of twin effect
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Earth frame: Free-float for 
particle experiments

"Oscillating iron nucleus” 
test of twin effect

Twin effect verified!

Canopus. The time-stretch factor can be as great as 10 for some of these particles: the 
fast-moving particles are measured to live 10 times longer, on average, than their 
measured lifetime when at rest! The experimental results agree with these calculations 
in all cases we have tried. Such time stretching is part of the everyday experience of 
high-energy particle physicists.

“And for these increased-lifetime experiments there is no problem of principle in 
making observations in an inertial, free-float frame. While rhey are decaying, particles 
cover at most a few tens of meters of space. Think of the flight of each particle as a 
separate experiment. An individual experiment lasts as long as it takes one high-speed 
particle to move through the apparatus— a few tens of meters of light-travel time. 
Ten meters of light-travel time equals about 33 nanoseconds, or 33 X 10“  ̂seconds.

“Can we construct an inertial frame for such happenings? Two ball bearings 
released from rest say 20 meters apart do not move together very far in 33 nanosec­
onds! Therefore these increased-lifetime experiments could be done, in principle, in 
free-float frames. It follows that special relativity suffices to describe the behavior of 
the ‘radioactive-decay clocks’ employed in these experiments. We do not need the 
theory of gravitation provided by general relativity.

“O f course, in none of these high-speed particle experiments do particles move 
back and forth the way our astronaut friend proposes to do between Earth and 
Canopus. Even that back-and-forth result has been verified for certain radioactive iron 
nuclei vibrating with thermal agitation in a solid sample of iron. Atoms in a hotter 
sample vibrate back and forth faster, on average, and thus stay younger, on average, 
than atoms in a cooler sample. In this case the ‘tick of the clock’ carried by an iron atom 
is the period of electromagnetic radiation (‘gamma ray’) given off when its nucleus 
makes the transition from a radioactive state to one that is not radioaaive. For detailed 
reasons that we need not go into here, this particular ‘clock’ can be read with very high 
accuracy. Beyond all such details, the experimental outcome is simply stated: Clocks 
that take one or many round trips at higher speed record a smaller elapsed time than 
clocks that take one or many round trips at lower speed.

“These various results— plus many others we have not described— combine to 
give overwhelming experimental support for the predictions of the astronaut concern­
ing the proposed trip to Canopus.’’

Dr. Bright sits back in his chair with a smile, obviously believing that he has 
disposed of all objections single-handedly.

“Yes,” we conclude, “about the reality of the effect there is no question. Therefore 
if you all approve, and the Space Agency provides that new and very fast rocket, we can 
be on our way.”

The meeting votes approval and our little story ends.
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CHAPTER 4 EXERCISES

Note: The following exercises are related to the story 
line of this chapter. Additional exercises may be se­
lected from Chapter 3 or the Special Topic on the 
Lorentz Transformation following Chapter 3.

4-1 practical space travel
In 2200 A.D. the fastest available interstellar rocket 
moves x̂: V =  0.75 of the speed of light. James Ab­
bott is sent in this rocket at full speed to Sirius, the 
Dog Star (the brightest star in the heavens as seen 
from Earth), a distance D =  8.7 light-years as mea­
sured in the Earth frame. James stays there for a time 
T  =  7 years as recorded on his clock and then returns 
to Earth with the same speed p  —  0.75.  Assume 
Sirius is at rest relative to Earth. Let the departure 
from Earth be the reference event (the zero of time 
and space for all observers).

According to Earth-linked observers: 
a  At what time does the rocket arrive at Sirius? 
b At what time does the rocket leave Sirius? 
c At what time does the rocket arrive back at 

Earth?
According to James’s observations: 
d At what time does he arrive at Sirius? 
e At what time does he leave Sirius? 
f  At what time does he arrive back at Earth? 
g As he moves toward Sirius, James is accompa­

nied by a string of outgoing lookout stations along his 
direction of motion, each one with a clock synchro­
nized to his own. What is the spatial distance between 
Earth and Sirius, according to observations made with 
this outgoing string of lookout stations?

h One of James’s outgoing lookout stations, call 
it Q, passes Earth at the same time (in James’s outgo­
ing frame) that James reaches Sirius. What time does 
Q's clock read at this event of passing? What time 
does the clock on Earth read at this same event?

i As he moves back toward Earth, James is ac­
companied by a string of incoming lookout stations 
along his direction of motion, each one with a clock 
synchronized to his own. One of these incoming look­
out stations, call it Z, passes Earth at the same time (in 
James’s incoming frame) that James leaves Sirius to 
return home. What time does Z ’s clock read at this 
event of passing? What time does the clock on Earth 
read at this same event?

To rea/ly understand the contents of Chapter 4, 
repeat this exercise many times with new values of p, 
D, and T that you choose yourself.

4-2 one-way twin paradox?
A worried student writes, “I still cannot believe your 
solution to the Twin Paradox. During the outward 
trip to Canopus, each twin can regard the other as 
moving away from him; so how can we say which 
twin is younger? The answer is that the twin in the 
rocket makes a turn, and in Lorentz spacetime geom­
etry, the greatest aging is experienced by the person 
who does not turn. This argument is extremely unsat­
isfying. It forces me to ask: What if the rocket breaks 
down when I get to Canopus, so that I stop there but 
cannot turn around? Does this mean that it is no 
longer possible to say that I have aged less than my 
Earthbound twin? But if not, then I would never have 
gotten to Canopus alive.” Write a half-page response 
to this student, answering the questions politely and 
decisively.

4-3 a relativistic oscillator
In order to test the laws of relativity, an engineer 
decides to construct an oscillator with a very light 
oscillating bob that can move back and forth very fast. 
The lightest bob known with a mass greater than zero 
is the electron. The engineer uses a cubical metal box, 
whose edge measures one meter, that is warmed 
slightly so that a few electrons “boil off” from its 
surfaces (see the figure). A vacuum pump removes air 
from the box so that electrons may move freely inside 
without colliding with air molecules. Across the mid­
dle of the box —  and electrically insulated from it—  
is a metal screen charged to a high positive voltage by 
a power supply. A voltage-control knob on the power 
supply can be turned to change the DC voltage V„ 
between box and screen. Let an electron boiled off 
from the inner wall of the box have very small velocity 
initially (assume that the initial velocity is zero). The 
electron is attracted to the positive screen, increases 
speed toward the screen, passes through a hole in the 
screen, slows down as it moves away from the attract­
ing screen, stops just short of the opposite wall of the 
box, is pulled back toward the screen; and in this way 
oscillates back and forth between the walls of the box.

a In how short a time T can the electron be made 
to oscillate back and forth on one round trip between 
the walls? The engineer who designed the equipment 
claims that by turning the voltage control knob high 
enough he can obtain as high a frequency of oscilla­
tion / =  1 /T  as desired. Is he right?

b For sufficiently low voltages the electron will 
be nonrelativistic— and one can use Newtonian me-
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chanics to analyze its motion. For this case the fre­
quency of oscillation of the electron is increased by 
what factor when the voltage on the screen is doubled? 
Discussion: At corresponding points of the elec­
tron’s parh before and afrer voltage doubling, how 
does the Newtonian kinetic energy of rhe electron 
compare in the two cases? How does its velocity com­
pare in rhe two cases?

c What is a definite formula for frequency/as a 
funcrion of volrage in the nonrelativistic case? Wait as 
late as possible to substitute numbers for mass of 
elecrron, charge of electron, and so forrh.

d What is the frequency in the extreme relativis­
tic case in which over most of its course rhe elecrron is 
moving . . . (rest of sentence suppressed!) . . . ? 
Call this frequency .

e On rhe same graph, plot two curves of the 
dimensionless quantity f / f ^  as functions of the di­
mensionless quantity qW^/{2mc'^), where q is the 
charge on the electron and m is its mass. First curve: 
the nonrelativistic curve from parr c to be drawn

heavily in the region where it is reliable and indicated 
by dashes elsewhere. Second curve: the extreme rela- 
rivisric value from part d, also with dashed lines 
where not reliable. From the resulting graph estimate 
quantitatively the voltage of transition from the 
nonrelativistic to the relativistic region. If possible 
give a simple argument explaining why your resulr 
does or does nor make sense as regards order of mag­
nitude (that is, overlooking factors of 2, 7T, etc.).

f Now think of the round-trip “proper period’’ 
of oscillation T experienced by the electron and logged 
by its recording wristwatch as it moves back and forth 
across rhe box. Ar low electron speeds how does rhis 
proper period compare wirh rhe laboratory period 
recorded by the engineer? What happens at higher 
electron speeds? At extreme relativistic speeds? How is 
this reflected in the “proper frequency’’ of oscillarion 
Tproper experienced by rhe elecrron? On rhe graph of 
parr e draw a rough curve in a different color or 
shading showing qualitatively the dimensionless 
quantity/p„p,^//„„ as a function of qV„/{2mc^).



TREKKING 
THROUGH SPACETIME

5.1 TIME? NO. SPACETIME MAP? YES.
no such thing as the unique time off an event!

Events are the sparkling grains of history. They define spacetime. Spacetime, yes. 
Time, no.

‘ ‘Time, no”? How come? Time here in Tokyo, at this enthronement of the successor 
of the Emperor Hirohito? Where is any meter to be seen that shows any such quality of 
location as time? Meter to measure the temperature here and now? Yes, this thermom­
eter. Meter to measure atmospheric pressure here and now? Yes, this barometer. But 
look as we will, nowhere can we see any meter that we can poke into the space 
hereabouts to measure its “time.” The time of an event? Impossible! No such thing. 
Time is not “meterable.”

Anything with which to compare time? Yes. Odometer reading, whether miles or 
kilometers, on the dashboard of our car. There’s no such thing as the odometer reading 
of Tokyo. Try every gadget one can, thrust it out into this Tokyo air, not one will 
register anything with the slightest claim to be called the odometer reading of these 
hereabouts.

What about looking at the dashboards of the cars in this neighborhood? Not all of 
them; that would be nonsense. Only the cars that were new, with odometer reading 
zero, at the time of Hirohito’s own enthronement.

Now at last we are getting into a line of questioning that shows some prospect of 
clearing up what we mean by “time.” We ask our companion, “What do all those 
day-and-year-counting wristwatches now read that were set to zero at the time of that 
earlier ceremony?”

“Sixty-two years, two days,” is her first reply. But then we ask, “What about that 
team that zoomed out to the nearest eye-catching star. Alpha Centauri, and back with 
almost the speed of light? Didn’t they get back ten years younger than we stay-at- 
homes?”

“ Time” of an event has 
no unique meaning

C ar mileage depends on car's 
path between places

137
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Wristwatch reading depends on 
its history of travel between events

Geographic mop assigns 
kilometer coordinates to places

Spacetime map assigns space  
and time coordinates to events

Limit attention to one 
space dimension plus one time 

dimension

“Yes,” she agrees, “surely their wristwatches now read fifty-two years, not sixty- 
two. So let me draw the lesson. There is no such thing as time. There is only totalized 
interval of time, time as that interval is racked up between the enthronement of 
Hirohito and the enthronement of the new Emperor Akihito, between event A and 
event B, on a wristwatch that has undergone its own individual history of travel 
from A to B.”

“I agree. The concept of time does not apply to location in spacetime. It applies to 
individual history of travel through spacetime.”

“How apt the comparison with odometer reading. Each dashboard shows, not the 
kilometerage of Akihito, but the kilometers traveled by that particular car between the 
one imperial ceremony and the other.”

Yes, it is nonsense to attribute a kilometer reading to Tokyo. However, it is not at 
all nonsense to make a map showing where Tokyo lies relative to all the towns 
roundabout, a map in which kilometers do appear, kilometers north and south, 
kilometers easr and west. Likewise the term “the time” of an event is totally without 
meaning. However, that event — and every event near it —  lends itself to display on a 
spacetime diagram (Figure 5-1), with distance (the locator of latticework clock) 
running in one direction, and in another direction time (the reading printed out by that 
clock on the occasion of that event). Time as employed in this sense acquires meaning 
only because it serves as a measure on a latticework-defined map. A different lattice- 
work? A different set of clocks, different readings on those clocks, a different map — 
but same events, same spacetime, same tools to measure the history-dependent 
interval between event and event.

Only on such a spacetime plot does one see at a glance the layout of all nearby 
events, and how one history of travel from event A to event B differs from another.

One problem in making our map: Spacerime has four dimensions— three space 
dimensions plus time. We picture our event points most readily when they occupy a 
two-dimensional domain and let themselves be dotted in on a two-dimensional page. 
Therefore for the present we limit attention to time and one space dimension; to 
events, whatever their timing, that occur on one line in space. All events that do not 
occur on this line we ignore for now. The space location of each event on this line we 
plot along a horizontal axis on the page. The lattice-clock time at which an event 
occurs we plot along a vertical axis, from bottom to top of the page. Space and time 
we measure in the same unit, for example meters of distance and meters of time —  or 
light-years of distance and years of time. We call the result a spacetim e m ap or a 
spacetim e diagram . Each spacetime map represents data from a particular reference 
frame, for example “the laboratory frame.” Figure 5-1 shows such a spacetime map.

Five sample event points appear on the laboratory spacetime map of Figure 5-1, 
events labeled 0, A, B, C, and D.

• Event 0  is the reference event, the firing of the starting gun, which we take 
to locate zero position in space and the zero of time. For our own convenience, 
we place point 0  at the origin of the spacetime map and measure space and time 
locations of all other events with respect to it.

same place FIGURE 5-1. Laboratory space- 
time map, showing the reference 
event O, other events A, B, C, a n d  
D, a  horizontal dashed line of si­
m ultaneity in time, a n d  a  verti­
cal dashed line o f equal position 
in space.

space ■
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• Event B  stands on the vertical time axis, directly above reference event 0. 
Therefore event B occurs at a later time than event 0. Event B lies neither to the 
right of the reference event nor to the left; its horizontal (space) location is zero. 
Therefore it occurs at the same place as the reference event 0 in the laboratory 
but later in time.

• Event A  lies on the horizontal space axis, directly to the right of reference event
0. Therefore event A  occurs at a different space location than event 0. It is 
neither above nor below event 0; its vertical (time) location is zero. Therefore it 
occurs at the same time as reference event 0  as observed in the laboratory.

• Event C rests above and to the right of the reference event. Standing higher 
than the reference event on the map, event C occurs later in time than 0  in this 
frame. Since it lies to the right, event C occurs at a positive space location with 
respect to event 0 in this frame.

• Event D  reposes above and to the left of the reference event. It also occurs later 
in time than reference event 0 but at a negative space location with respect to 
event 0  as observed in the laboratory.

Scatter other event points on the spacetime map. Each event point can represent an 
important happening. Then a single glance at the spacetime map gives us, in principle, 
a global picture of all significant events that have occurred along one line in space and 
as far back in time as we wish to look. The spacetime map puts all this history at our 
fingertips!

In exploring history, w e  may want to know which events occurred at the same time 
as others in the laboratory free-float frame. Two events that occur at the same time 
have the same vertical (time) location on the spacetime map. A horizontal line drawn 
through one event point passes through all events simultaneous with that event in the 
given frame. In Figure 5 -1, the dashed horizontal line shows that events B and D  are 
simultaneous as observed in the laboratory frame, although they occur at different 
locations in space. Similarly, events 0  and A  are simultaneous as observed in this 
frame.

When we wish to “retell history,” we draw a sequence of horizontal lines above one 
another on the spacetime map. We mimic the advance of time by stepping in 
imagination from one horizontal line to the next horizontal line above it, noting which 
events occur at each time.

Vertical lines on the spacetime map indicate which events occur at the same place 
along the single line in space. Events A  and C in Figure 5-1 occur at the same space 
location as measured in the laboratory, but at different times as measured in this 
frame. Similarly, events 0 and B occur at the same place as one another in the 
laboratory.

Horizontal line on spacetime 
diagram picks out events that are  
simultaneous in this frame

5.2 SAME EVENTS; DIFFERENT 
FREE-FLOAT FRAMES

different frames: different points for an event 
on their spacetime maps, but same spacetime 
interval between two events

Figure 5-1 demonstrates two great payoffs of the spacetime map: (1) It places space 
and time on an equal footing, thus recognizing a basic symmetry of nature. (2) It 
allows us to review at a single glance the whole history of events and motions that have 
occurred along the given line in space.
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Same events, difFerent frames: 
Different spacetime maps

We want to take advantage of a third payoff of the spacetime map; Plot the same 
events on two, three, or more spacetime maps based on two, three, or more different 
free-float frames in uniform relative motion. Compare. In this way analyze the various 
space and time relations among these events as measured in difFerent frames. Why do 
this? In order to find out what is difFerent in the difFerent frames and what remains the 
same.

Figure 5-3 shows three spacetime maps —  for laboratory, rocket, and super-rocket 
free-float frames. The super-rocket moves faster than the rocket with respect to the 
laboratory (but not faster than light!). On each of the three spacetime maps we plot the 
same two events: the events of emission E and reception f? of a light flash. These are the 
two events analyzed in Chapter 3 to derive the expression for the spacetime interval. As 
a reminder of the physical phenomena behind events E and R, refer to Figure 5-2.

The light flash is emitted (event E) from a sparkplug attached to the reference clock 
of the first rocket. Take event E as the reference event, called event 0  in Figure 5 -1. By 
prearrangement the sparkplug fires at the instant when both the rocket reference clock 
and the super-rocket reference clock pass the laboratory reference clock. All three

LABORATORY PLOT

A
0 0 0 ® 
0  0  0 ®

0  0  0 ®
0  0  0  0 ® 
0  0  0  0 ®

0 0 0 0 © ® ® ® ®
E R

ROCKET PLOT

A

\1

A A A A A A A A A  
A A A A A 
A A

A A A A A A A A A
A A A A A A 

A A

SUPER-ROCKET PLOT
FIGURE 5-2 (Figure 3-5 repeated). The flash p a th  as recorded in three differentfram es, showing 
event E, emission of the flash, a n d  event R, its reception a fter reflection. Squares, circles, and 
triangles represent the latticework of recording clocks in laboratory, rocket, and super-rocket frames, respec­
tively. The super-rocket frame moves to the right with respect to the rocket, so that the event of reception, R, 
occurs to the left of the event of emission, E, as measured in the super-rocket frame. The reflecting mirror is 

fixed in the rocket, hence appears to move from left to right in the laboratory and from right to left in the 
super-rocket.
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laboratory time FIGURE 5-3. Spacetime maps fo r three
fram es, showing emission o f the reference 
flash a n d  its reception a fter reflection. The
hyperbola drawn in each map satisfies the equa­
tion for the invariant interval (or proper time), 
which has the same value in all three frames: 
(interval)^ =  (time)^ — (space)^.

LABORATORY 
SPACETIME MAP

rocket time

SPACETIME MAP

super-rocket time

SUPER-ROCKET  
SPACETIME MAP

reference clocks are set to read zero at this reference event, whose event point is placed 
at the origin of all three spacetime maps.

Now use the latticework of meter sticks and clocks in each free-float frame (clocks 
pictured in Figure 5-2) to measure the position and time of every other event with 
respect to the reference event. In particular, record the position and time of the 
reception (event R) of the flash in each of the three frames.

The reception of the light ray (event R) occurs at different locations and at different 
times as measured in the three frames. In the rocket the reception of the reflected flash 
occurs back at the reference clock (the zero of position) and 6 meters of time later, as
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Same events, different frames: 
Different space and time 

coordinates

seen in Figure 5-2 and more directly in Figure 5-3 (center):

Rocket: (position of reception, event R) — 0 
Rocket: (time of reception, event R) =  6 meters

Emission and reception occur at the same place in the rocket frame. Therefore the 
rocket time, 6 meters, is just equal to the interval, or proper time, between these two 
events:

(proper time)'

R ocket
_  /  time of y  

\  reception /

R ocket

(position o fy  
reception /

R ocket R ocket
_  /  time of y _

\  reception/ (zero)^ — (6 meters)^

In the laboratory the reception event R occurs at a time greater than 6 meters, as can 
be seen from the expression for interval:

Laboratory
/  time of y  
\  reception/

Laboratory
/p o s .r io n o fy _  ,
\  reception /

In this equation the square of 6 meters results from subtracting a positive quantity 
from the square of the laboratory time of reception. Therefore the laboratory time of 
reception itself must be greater than 6 meters:

Laboratory: (position of reception, event R) =  8 meters 
Laboratory: (time of reception, event /?) =  10 meters

Same events, different frames: 
Same spacetime interval

In the laboratory frame, reception appears to the right of the emission, as seen in Figure 
5-2. Hence it is plotted to the right of the origin in the laboratory map (Figure 5-3, 
top).

In the super-rocket frame, moving faster than the rocket with respect to the 
laboratory, the event of reception appears to the left of the emission (Figure 5-2). 
Therefore the space separation is called negative and plotted to the left of the origin in 
the super-rocket map (Figure 5-3, bottom). The time separation in the super-rocket is 
greater than 6 meters, by the same argument used for the time of reception in the 
laboratory frame:

Super-rocket Super-rocket
/  time of y  _  /  position o fy  . 
\reception/ \  reception / ■ (6 meters)^

In this equation, the space separation is a negative quantity. Nevertheless its square is a 
positive quantity. So the equation says that the square of 6 meters results from 
subtracting a positive quantity from the square of the super-rocket time of reception. 
Therefore the super-rocket time separation must also be greater than 6 meters:

Super-rocket: (position of reception, event R) — — 20 meters 
Super-rocket: (time of reception, event R) =  20.88 meters
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5.3 INVARIANT HYPERBOLA
all observers agree: ''event point lies 
somewhere on this hyperbola"

Different reception points marked R in different spacetime maps all refer to the same 
event. What do these different sepatations of the same event from the reference event 
have in common? They all satisfy invariance of the interval, reflected in the equation

(time separation)^ — (space sepatation)^ =  (interval)^ 

Constant? Constant w ith respect to w hat?

constant

— With respect to free-float frame. Record different space and time measurements in 
different frames, but figure out from rhem always the same interval.

Curves drawn on the three maps conform to this equation. This kind of curve, in which 
the difference of two squares equals a constant, is called a hyperbola. Somewhere on 
this hyperbola is recorded the time and position of one and the same reception event as 
measured in every possible rocket and supet-tocket frame. Same reception event, 
different frames, all summarized in one hyperbola, the invariant hyperbola.

Spacetime arrows in all three maps connect the same pair of events. They imply the 
identical invariant interval. They embody the same spacetime reality. In a deep sense 
these thtee attows on the page tepresent the same artow in spacetime. Spacetime maps 
of different observets show different projections —  different petspectives —  of the 
same atrow in spacetime.

Invariant hyperbola; Locus of 
same event in all rocket frames

The same arrow? The same magnitude fo r the spacetime arrow pictured in a ll  three 
maps of Figure 5 - 3 ?  Then why do the three arrows have obviously different lengths in 
the three maps?

Because the paper picture of spacetime is a lie! The length of an arrow on a piece of 
paper is Euclidean, related to the sum of squares of the space separations of the 
endpoints in two perpendicular directions. Euclidean geometry works fine if what is 
being represented is flat space, for example the map of a township. But Euclidean 
geometry is the wrong geometry and betrays us when we try to lay out time along one 
direction on the page. Instead we need to use Lorentz geometry of spacetime. In 
Lorentz geometry, time must be combined with space through a difference of squares 
to find the correct magnitude of the resulting spacetime vector— the interval. That 
is why the arrows in the different spacetime maps of Figure 5-3 seem to be of 
different lengths. The reality that these lengths represent, however— rhe value of 
the interval between two events— is the same in all three spacetime maps.

5.4 WORLDLINE
the moving particle traces out a line —  its 
woHdline— on the spacetime diagram

We describe the world by listing events and showing how they relate to one another. 
Until now we have focused on pairs of events and spacetime intervals between them. 
Now we turn to a whole chain of events, events that track the passage of a particle
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String of event pearls: Worldline!

Worldline versus line on 
spacetime map

Examples of worldlines

through spacetime. Think of a speeding sparkplug that emits a spark every meter of 
time read on its own wrisrwatch. Each spark is an event; the collection of spark events 
forms a chain that threads through spacetime, like pearls. String the pearls together. 
The thread connecting the pearl events, tracing out the path of a particle through 
spacetime, has a wonderfully evocative name: w orldline. The sparkplug travels 
through spacetime trailing its worldline behind it.

The speeding sparkplug is only an example. Every particle has a worldline that 
connects events along its spacetime path, events such as collisions or near-collisions 
(close calls) with other particles.

Events — pearls in spacerime —  exist independent of any reference frame we may 
choose to describe them. A worldline strings these event pearls together. The world­
line, too, exists independent of any reference frame. A particle traverses spacetime— 
follows a worldline —  totally oblivious to our poor efforts to describe its motion using 
one or another free-float frame. Yet we are accustomed to using a free-float frame and 
its associated latticework of rods and clocks. One clock after another records its 
encounter with the particle. The worldline of the particle connects this chain of 
encounter events.

We can draw this worldline of a particle on the spacetime map for this reference 
frame. Such worldlines are shown in Figure 5-5 and in later figures of this chapter. 
Strictly speaking, the line drawn on the spacetime map is not the worldline itself. It is 
an image of the worldline— a strand of ink printed on a piece of paper. When we use a 
highway map, we often refer to a line drawn on the paper as “the highway.” Yet is not 
the highway itself, but an image. Ordinarily this causes no confusion; no one tries to 
drive a car across a highway map! Similarly, we loosely refer to the line drawn on the 
spacetime map as the worldline, even though the worldline in spacetime stands above 
and beyond all our images of it.

The worldline is seen in no way more clearly than through example. Particle 1 starts 
at the laboratory reference clock at zero time and moves to the right with constant 
speed (Figure 5-4). As particle 1 zooms along a line of laboratory latticework of clocks, 
each clock it encounters records the time at which the particle passes. Each clock record 
shows where the clock is located and the time at which particle 1 coincides with the 
clock. “Where and when” determines an event, the event o f coincidence of particle 
and recording clock. Afterwards the chief observer travels throughout the lattice of 
clocks, collecting the records of these coincidence events. She plots these events as 
points on her spacetime map. She then draws a line through event points in sequence 
— the worldline of particle 1 (Figure 5-5).

Particle 1 moves w ith constant speed along a single direction in space. The distance 
it covers is equal for each tick o f the laboratory clocks. The worldline o f particle 1 
shows equal changes in space during equal lapses o f tim e by being straight on the 
spacetime map.

Particle 2 moves to the right faster than particle 1 and so covers a greater distance in 
the same time lapse (Figure 5-4). Lattice clocks record their events of coincidence with 
particle 2, and the observer collecrs rhese records and plots the worldline of particle 2 
on the same spacetime map (worldline shown in Figure 5-5).

And so it goes: Particle 3 is a light flash and moves to the right in space (Figure 5-4) 
with maximum speed: one meter of distance per meter of time. With horizontal and 
vertical axes calibrated in meters, the light-flash worldline rises at an angle of 45 
degrees (Figure 5-5).

Particle 4 does not move at all in laboratory space; it rests quietly next to the 
laboratory reference clock. Like you sitting in your chair, it moves only along the time 
dimension; in the laboratory spacetime map its worldline is vertical (Figure 5-5).

Particle 5 moves not to the right but to the left in space according to the laboratory 
observer (Figure 5-4), so its worldline angles up and leftward in the laboratory 
spacetime map (Figure 5-5).

Each of these particles moves with constant speed, so each traces out a straight 
worldline. After 3 meters of time as measured in the laboratory frame, different
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FIGURE 5-4. Trajectories in space 
{not in spacetime!) o f particles 1 
through 3  during  3  meters of time.
Each particle starts at the reference clock 
(the square) at zero of time and moves 
with a constant velocity.

FIGURE 5-5. W orldlines in space­
time of the particles shown in Fig­
ure 3-4, plotted fo r the laboratory 

fram e. Only the worldline for particle 1 
includes a sample set of event points that 
are connected to make up the worldline.

particles have moved different distances from the starting point (Figure 5-4). In the 
laboratory spacetime map their space positions after 3 meters of time lie along the 
upper horizontal line o f sim ultaneity , shown dashed in Figure 5-5.

Particle 4 is not the only object stationary in space. Every laboratory clock lies at rest 
in the laboratory frame; it moves neither right nor left as time passes. Nevertheless 
each laboratory clock moves forward in time, tracing out its own vertical worldline in 
the laboratory spacetime map. The background vertical lines in Figure 5-5 are 
worldlines of rhe row of laboratory clocks.

W hat is the difference between a  “p ath  in space" an d  a  “worldline in spacetime”?

The transcontinental airplane leaves a jet trail in still air. That trail is the plane’s path 
in space. Take a picture of that trail and you have a space map of the motion. From 
that space map alone you cannot tell how fast the jet is moving at this or that 
different point on its path. The space map is an incomplete record of the motion.

The plane moves not only in space but also in time. Its beacon flashes. Plot those 
emissions as events on a spacetime map. This spacetime map has not only a 
horizontal space axis but also a vertical time axis. Now connect those event points 
with a worldline. The worldline gives a complete description of the motion of the jet as 
recorded in that frame. For example, from the worldline we can reckon the speed of 
the plane at every event along its path.

Worldline gives spacetime map of the journey of the jet. Likewise a worldline 
drawn on a spacetime map images the journey of any particle through spacetime. A 
worldline is not a physical path, not a trajectory, not a line in space. An object at rest 
in your frame has, for you, no path at all through space; it stays always at one space 
point. Yet this stationary particle traces out a "vertical” worldline in your spacetime 
map (such as line 4 in Figure 5-5). A particle always has a worldline in spacetime. As 
you sit quietly in your chair reading this book, you glide through spacetime on your 
own unique worldline. Every stationary object lying near you also traces out a 
worldline, parallel to your own on your spacetime map.

Path in space versus 
worldline in spacetime

Not all particles move with constant speed. When a patticle changes speed with 
respect to a free-float frame, we know why: A force acts on it. Think of a train moving
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Changing speed means 
curving worldline

on a straight sttetch of track. A force applied by the locomotive speeds up all the cars. 
Small speed: small distance covered in a given time lapse; worldline inclined slightly 
to the vertical in the spacetime map. Great speed: great distance covered in the same 
stretch of time; wotldline inclined at a gteater angle to the vertical in the spacetime 
map. Changing speed: changing distances covered in equal time periods; worldline that 
changes inclination as it ascends on the spacetime map— a curved worldline!

Wait a minute! The train moves along a straight track. Yet you say its worldline is 
curved. Straight or curved? Make up your mind!

Straight in space does not necessarily mean straight in spacetime. Place your finger on 
the straight edge of a table near you. Now move your finger rapidly back and forth 
along this edge. Clearly this motion lies along a straight line. As your fingertip 
changes speed and direction, however, it travels different spans of distance in equal 
time periods. During a spell in which it is at rest on the table edge, your fingertip 
traces out a vertical portion of its worldline on the spacetime map. When it moves 
slowly to the right on the table, it traces out a worldline inclined slightly to the right 
of vertical on the map. When it moves rapidly to the left, your fingertip leaves a 
spacetime trail inclined significantly to the left on the map. Changing inclination of 
the worldline from point to point results in a curved worldline. Your finger moves 
straight in space but follows a curved worldline in spacetime!

Limit on worldline slope: 
speed of light

Figure 5-6 shows a curved worldline, not for a locomotive, but for a particle 
constrained to travel down the straight track of a linear accelerator. The particle starts 
at the reference clock at the time of the reference event (0 on the map). Initially the 
particle moves slowly to the right along the track. As time passes —  advancing upward 
on the spacetime map —  the particle speed increases to a large fraction of the speed of 
light. Then the particle slows down again, comes to rest at event Z, with a vertical 
tangent to its worldline at that event. Thereafter the particle accelerates to the left in 
space until it arrives at event P.

What possible worldlines are available to the particle that has arrived at event P? A 
material particle must move at less than the speed of light. In other words, it travels less 
than one meter of distance in one meter of time. Its future worldline makes an “angle 
with the vertical’’ somewhere between plus 45 degrees and minus 45 degrees when 
space and time are measured in the same units and plotted to the same scale along 
horizontal and vettical axes on the graph. These limits of slope— which apply to every 
point on a particle worldline— are shown as dashed lines emerging from event P in 
Figure 5-6 (and also from event 0).

limits on worldline slope FIGURE 5-6. C urved laboratory 
w orldline o f a  particle th a t 
changes speed as it  moves back 
a n d  forth  along a  straight line in 
space. Some possible worldlines avail­
able to the particle after event P.
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The worldline gives a complete description of particle motion in spacetime. As 
drawn in the spacetime map for any frame, the worldline tells position and velocity of 
the particle at every event along its trail. In contrast, the trajectory or orbit or path 
shape of a particle in space does not give a complete description of the motion. To 
complete the description we need to know when the particle occupies each location on 
that trajectory. A worldline in a spacetime map automatically displays all of this 
information.

The spacetime map provides a tool for retrospective study of events that have 
already taken place and have been reported to the free-float observer who plots them. 
Once she plots these event points, this analyst can trace already plotted worldlines 
backward in time. She can examine at a single glance event points that may have 
occurred light-years apart in space. These features of the spacetime map do not violate 
our experience that time moves only forward or that nothing moves faster than light. 
Everything plotted on a spacetime map is history; it can be scanned rapidly back and 
forth in the space dimension or the time dimension or both. The spacetime map 
supplies a comprehensive tool for recognizing patterns of events and teasing out laws 
of nature, but it is useless for influencing the events it represents.

Spacetime map displays only 
already detected events

5.5 LENGTH ALONG A  PATH
straight line has shortest length between two 
given points in spare

Distance is a central idea in all applications of Euclidean geometry. For instance, using 
a flexible tape measure it is easy to quantify the total distance along a winding path 
that starts at one point (point 0  in Figure 5-7) and ends at another point (point B). 
Another way to measure distance along the curved path is to lay a series of short 
straight sticks end to end along the path. Provided the straight sticks are short enough 
to conform to the gently curving path, total distance along the path equals the sum of 
lengths of the sticks.

The length of a short stick laid between any two nearby points on the path —  for 
instance, points 3 and 4 in Figure 5-7 —  can also be calculared using the northward 
separation and the eastward separation between the two ends of the stick as measured 
by a surveyor.

(length)^ =  (northward separation)^ -b (eastward separation)^

Measure length of curved path 
with tape measure . . .

. . .  or with short straight sticks 
laid end to end along path

Distance is invariant for surveyors. Therefore the length of this stick is the same when 
calculated by any surveyor, even though the northward and eastward separations 
between two ends of the stick have different values, respectively, for different survey­
ors. The length of another stick laid elsewhere along the path is also agreed on by all 
surveyors despite their use of different northward direcrions. Therefore the sum of the 
lengths of all short sticks laid along the path has the same value for all surveyors. This 
sum equals the value of the total length of the path, on which all surveyors agree. And 
this total length is just the length measured using the flexible tape.

It is possible to proceed from 0  to B along quite another path —  for example along 
straight line OB in Figure 5-7. The length of this alternative path is evidently different 
from that of the original curved path. This feature of Euclidean geometry is so well 
known as to occasion hardly any comment and certainly no surprise: In Euclidean 
geometry a curved path between two specified points is longer than a straight path 
between them. The existence of this difference of length between two paths violates no 
law. No one would claim that a tape measure fails to perform properly when laid along 
a curved path.

All surveyors agree on 
length of path
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1211/2

FIGURE 5-7. Length along a  w inding p a th  starting  a t  the town square. Notice that the total length 
along the winding path from point O to point B is greater than the length along the straight northward axis 
from O /o B.

Straight path in space has 
shortest length

Among all possible paths between two points in space, the straight-line path is 
unique. All surveyors agree that this path has the shortest length. When we speak of 
“the distance between two points,” we ordinarily mean the length of this straight 
path.

Measure proper time along 
curved worldline with 

wristwatch . . .

5.6 WRISTWATCH TIME ALONG A  
WORLDLINE

straight worldline has longest proper time 
between two given events in spaeetime

A curved path in Euclidean space is determined by laying down a flexible tape measure 
and recording distance along the path’s length. A curved worldline in Lorentz space- 
time is measured by carrying a wristwatch along the worldline and recording what it 
shows for the elapsed time. The summed spacetime interval —  the proper time read 
directly on the wristwatch —  measures the worldline in Lorentz geometry in the same 
way that distance measures path length in Euclidean geometry.

A particle moves along the worldline in Figure 5-8. This particle carries a wrist­
watch and a sparkplug; the sparkplug fires every meter of time (1, 2 ,3 ,4 ,  . . . ) as 
read off the particle’s wristwatch. The laboratory observer notes which of his clocks the
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W ORLDLINE IN SPACETIME
FIGURE 5-8. Proper time along a  curved worldline. Notice that the total proper time along the curved 
worldline from event O to event B is smaller than the proper time along the straight line from O to B.

traveling particle is near every time the sparkplug fires. He plots that location and that 
lattice clock time on his spacetime map, tracing out the worldline of the particle. He 
numbers spark points sequentially on the resulting worldline, as shown in Figure 5-8, 
knowing that these numbers register meters of time recorded on the moving wrist- 
watch.

Consider the spacetime interval between two sequential numbered flashes of the 
sparkplug, for instance those marked 3 and 4 in the figure. In the laboratory frame 
these two sparks are separated by a difference in position and also by a difference in 
time (the time between them). The squared interval— the proper time squared — 
between the sparks is given by the familiar spacetime relation:

(proper time)^ =  (difference in time)^ — (difference in position)^

What about the proper time between sparks 3 and 4 calculated from measurements 
made in the sparkplug frame? In this frame, both sparks occur at the same place, 
namely at the position of the sparkplug. The difference in position between the sparks 
equals zero in this frame. As a result, the time difference in the sparkplug frame —  the 
“wristwatch time” — is equal to the proper time between these two events:

(proper time)^ “  (1 meter)^ (zero)^ ~  (1 meter)^ [recorded on traveling wristwatch]

This analysis assumes that sparks are close together in both space and time. For 
sparks close enough together, the velocity of the emitting particle does not change 
much from one spark to the next; the particle velocity is effectively constant between 
sparks; the piece of curved wbrldline can be replaced with a short straight segment. 
Along this straight segment the particle acts like a free-float rocket. The proper time is

. . .  or as sum of intervals 
between adjacent events



1 5 0  CHAPTER 5 TREKKING THROUGH SPACETIME

All observers agree on proper 
time along worldline

Straight worldline has 
longest proper time

Principle of Maximal Aging 
predicts motion of free particle

invariant in free-float rocket and free-float laboratory frames. Thus the laboratory 
observer can compute the value of the proper time between events 3 and 4 and predict 
the time lapse —  one meter— on the traveling wristwatch, which measures the proper 
time directly.

Elsewhere along the worldline the particle moves with a different speed. Neverthe­
less the proper time between each consecutive pair of sparks must also be independent 
of the free-float frame in which that interval is reckoned. For sparks close enough 
rogether, this proper time equals the time read directly on the wristwatch.

All observers agree on the proper time between every sequential pair of sparks 
emitted by the sparkplug. Therefore the sum of of all individual proper times has the 
same value for all observers. This sum equals the value of the total proper time, on 
which all free-float observers agree. And this total proper time is just the wristwatch 
time measured by the traveling sparkplug.

In brief, proper time is the time registered in a rocket by its own clock, or by a person 
through her own wristwatch or her own aging. Like aging, proper time is cumulative. 
To obtain total proper time racked up along a worldline between some marked 
starting event and a designated final event, we first divide up the worldline into 
segments so short that each is essentially “straight” or “free-float.” For each segment 
we determine the interval, that is, the lapse of proper time, the measurement of aging 
experienced on that segment. Then we add up the aging, the proper time for each 
segment, to get total aging, total wristwatch time, total lapse of proper time.

An automobile may travel the most complicated route over an entire continent, but 
the odometer adds it all up and gives a well-understood number. The traveler through 
the greater world of spacetime, no matter how many changes of speed or direction she 
undergoes, has the equivalent of the odometer with her on her journey. It is her 
wristwatch and her body— her aging. Your own wristwatch and your biological clock 
automatically add up the bits of proper time traced out on all successive segments of 
your worldline.

It is possible to proceed from event 0  to event B along quite another worldline— for 
example, along the straight worldline OB in Figures 5-8 and 5-9 (bottom). The proper 
time from OtoB  along this new worldline can be measured directly by a flashing clock 
that follows this new worldline. It can also be calculated from records of flashes 
emitted by the clock as recorded in any laboratory or rocket frame.

Total proper time along this alternative worldline has a different value than total 
proper time along the original worldline. In Lorentz geometry a curved worldline 
berween two specified events is shorter than the direct worldline between them — 
shorter in terms of total proper time, total wristwatch time, total aging.

Total proper time, the aging along any given worldline, straight or curved, is an 
invariant: it has the same value as reckoned by observers in all overlapping free-float 
frames. This value correctly predicts elapsed time recorded directly on the wristwatch 
of the particle that travels this worldline. It correctly predicts the aging of a person or a 
mouse that travels this worldline. A different worldline between the same two events 
typically leads to a different value of aging —  a new value also agreed on by all 
free-float observers: Aging is maximal along the straight worldline between two 
events. This uniqueness of the straight worldline is also a matter of complete agree­
ment among all free-float observers. All agree also on this: The straight worldline is the 
one actually followed by a free particle. Conclusion: Between two fixed events, a free 
particle follows the worldline of maximal aging. This more general prediction of the 
worldline of a free particle is called the P rincip le  o f M aximal Aging. It is true not 
only for “straight” particle worldlines in the limited regions of spacetime described by 
special relativiry but also, with minor modification, for the motion of free particles in 
wider spacetime regions in the vicinity of gravitating mass. The Principle of Maximal 
Aging provides one bridge between special relativity and general relativity.

The stark contrast between Euclidean geometry and Lorentz geometry is shown in 
Figure 5-9. In Euclidean geometry distance between nearby points along a curved
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FIGURE 5-9. P ath  in space: In Euclidean geometry the curved path has greater length. W orldline in 
spacetime: In Lorentz geometry the curved worldline is traversed in shorter proper time.

path is always equal to or greater than the northward separation between those two 
points. In contrast, proper time between nearby events along a curved worldline is 
always equal to or less than the corresponding time along the direct worldline as 
measured in that frame.

Stark contrast between Euclidean 
and Lorentz geometries
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Proper times compare worldlines

The difference of proper time between two alternative worldlines in spacetime 
violates no law, just as the difference of length between two alternative paths in space 
violates no law. There is nothing wrong with a wristwatch that reads different proper 
times when carried along different worldlines between events 0  and B in spacetime, 
just as there is nothing wrong with a tape measure that records different lengths for 
different paths between points 0 and B in space. In both cases the measuring device is 
simply giving evidence of the appropriate geometry: Euclidean geometry for space, 
Lorentz geometry for spacetime.

In brief, the determination of cumulative interval, proper time, wristwatch time, 
aging along a worldline between two events is a fundamental method of comparing 
different worldlines that connect the same two events.

Among all possible worldlines between two events, the straight worldline is unique. 
All observers agree that this worldline is straight and has the longest proper time — 
greatest aging —  of any possible worldline connecting these events.

5.7 KINKED WORLDLINE
kink in the worldline decreases aging along 
that worldline

Acceleration-proof clocks

Simplify: Worldlines with 
straight segments

The change in slope of the worldline from event to event in Figures 5-8 and 5-9 
(bottom) means that the clock being carried along this worldline changes velocity: It 
accelerates. Different clocks behave differently when accelerated. Typically a clock can 
withstand a great acceleration only when it is small and compact. A pendulum clock is 
not an accurate timepiece when carried by car through stop-and-go traffic; a wrist­
watch is fine. A wristwatch is destroyed by being slammed against a wall; a radioactive 
nucleus is fine. Typically, the smaller the clock, the more acceleration it can withstand 
and still register properly, and the sharper can be the curves and kinks on its worldline. 
In all figures like Figures 5-8 and 5-9 (bottom), we assume the ideal limit of small 
(acceleration-prooO clocks.

We are now free to analyze a motion in which particle and clock are subject to a 
great acceleration. In particular, consider the simple special case of the worldline of 
Figure 5-8. That worldline gradually changes slope as the particle speeds up and slows 
down. Now make the period of speeding up shorter and shorter (great driving force!); 
also make the period of slowing down shorter and shorter. In this way come eventually 
to the limiting case in which episodes of acceletation and deceleration —  curved 
portions of the worldline —  are too short even to show up on the scale of the spacetime 
map (worldline OQB in Figure 5-10). In this simple limiting case the whole history of 
motion is specified by (1) initial event 0, (2) final event B, and (3) turnaround event Q, 
halfway in time between 0  and B. In this case it is particularly easy to see how the lapse 
of proper time between 0  and B depends on the location of the halfway event— and 
thus to compare three worldlines, OPB, OQB, and ORB.

Path OPB is the worldline of a particle that does not move in space; it stays next to 
the reference-frame clock. Proper time from 0 to B by way of P is evidently equal to 
time as measured in the free-float frame of this reference clock:

(total proper time along OPB) = 1 0  meters of time

In contrast, on the way from 0 to B via R, for each segment the space separation equals 
the time separation, so the proper time has the value zero:
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FIGURE 5-10. Three alternative 
worldlines connecting events O  
a n d  B. The sharp changes of velocity 
at events Q  and R have been drawn for 
the ideal limit of small clocks that tol­
erate great acceleration. The bold-face 
number j  is the proper time along the 
segment O Q , reckoned from the differ­
ence between the squared time separa­
tion and the squared space separation:

= 5" -  4̂ .

(proper time along leg ORY — (time)^ — (space)^
=  (5 meters)^ “  (5 meters)^
=  0

(total proper time along ORB) =  2 X (proper time along OR)
=  0

Zero p roper time for light

As far as we know, only three things can travel 5 meters of distance in 5 meters of 
time; light (photons), neutrinos, and gravitons (see Box 8-1). No material clock can 
travel at light speed. Therefore the worldline ORB is not actually attainable by a 
material particle. However, it can be approached arbitrarily closely. One can find a 
speed sufficiently close to light speed —  and yet less than light speed —  so that a trip 
with this speed first one way then the other will bring an ideal clock back to the 
reference clock with a lapse of proper time that is as short as one pleases. In the same 
way we can, in principle, go to the star Canopus and back in as short a round-trip 
rocket time as we choose (Section 4.8).

As distinguished from the limiting case ORB, worldline OQB demands an amount 
of proper time that is greater than zero but still less than the 10 meters of proper time 
along the direct worldline OPB:

(proper time along leg OQ)' =  (5 meters)^ — (4 meters)^
=  25 (meters)^ — 16 (meters)^ 
=  9 (meters)^
=  (3 meters)^

Reduced proper time along 
kinked worldline

(proper time along leg OQ) =  3 meters

and

(total proper time along both legs OQB) — 2 X (proper time along OQ)
=  6 meters

This is less proper time than (proper time along OPB) = 1 0  meters thar characterized 
the “direct” worldline OPB. Our trip to Canopus and back described in Chapter 4 
follows a worldline similar to OQB.
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S A MP L E  P R O B L E M  5-1
MORE IS LESS

SPACE AND TIME 
LOCATIONS OF EVENTS

Space Time 
(years) (years)

Event 1 
Event 2 
Event 3 
Event 4

1
- 0 .5

2

-----space — ►

T wo alternative worldlines between events I and 4

In the spacetime map shown, time and space are measured in years. A table shows space 
and time locations of numbered events in this frame.

b.

One traveler moves along the solid straight worldline segments from event 1 to 
events 2 ,3 , and 4. Calculate the time increase on her clock between event 1 and 
event 2; between event 2 and event 3; between event 3 and event 4. Calculate 
total proper time —  her aging —  along worldline 1, 2, 3, 4.

Another traveler, her twin brother, moves along the straight dotted worldline 
from event 1 directly to event 4. Calculate the time increase on his clock along the 
direct worldline 1, 4.

c. Which twin (solid-line traveler or dotted-line traveler) is younger when they 
rejoin at event 4?

SOLUTION
From the table next to the map, space separation between events 1 and 2 equals 
0. Time separation equals 1 year. Therefore the interval is reckoned from 
(interval)^ =  P  — 0^=1^. Thus the proper time lapse on a clock carried between 
events 1 and 2 equals 1 year.

Space separation between event 2 and event 3 equals 1 — (—0.5) =  1.5 
light-years. Time separation equals 2 years. Therefore the square of the interval is 
2  ̂— (1.5)^ =  4 — 2.25 =  1.75 (years)^ and the advance of proper time equals 
the square root of this, ot 1.32 years.

Between event 3 and event 4 space separation equals 2.5 light-years and time 
separation 3 years. The square of the interval has the value 3  ̂— (2.5)^ =  9 — 
6.25 =  2.75 (years)^ and proper time between these two events equals the square 
root of this, or 1.66 years.



Total proper time— aging —  along worldline 1, 2, 3, 4 equals the sum of 
proper times along individual segments: 1 +  1.32 +  1.66 =  3.98 years.

b. Space separation between events 1 and 4 equals 1 light-year. Time separation is 6 
years. The squared interval between them equals 6  ̂ — 1̂  =  36 — 1 =  35 
(years)^. A traveler who moves along the direct worldline from event 1 to event 4 
records a span of proper time equal to the square root of this value, or 5.92 years.

c. The brother who moves along straight worldline 1, 4 ages 5.92 years during the 
trip. The sister who moves along segmented worldline 1, 2, 3, 4 ages less: 3.98 
years. As always in Lorentz geometry, the ditect worldline (shown dotted) is 
longer— that is, it has more elapsed proper time, greater aging —  than the 
indirect worldline (shown solid).
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5.8 STRETCH FACTOR
ratio off frame-clock time to wristwatch time

A speeding beacon emits two flashes, F and S, in quick succession. These two flashes, 
as recorded in the rocket that carties the beacon, occur with a 6-meter separation in 
time but a zero separation in space. Zero space separation? Then 6 metets is the value 
of the interval, the proper time, the wristwatch time between F and S. As registered in 
the laboratory, in contrast, the second flash S occurs 10 meters of time later than the 
first flash F. The ratio between this frame time, 10 meters, and the proper time, 6 
meters, between the two events we call the time stretch factor, or simply stretch  
factor. Some authors use the lowercase Greek letter gamma, y, for the stretch factor, 
as we do occasionally. We will also use the Greek letter tau, T , for proper time.

The same two events register in the super-rocket frame that overtakes and passes the 
beacon —  register with a separation in time of 20.88 meters. In this frame, the time 
stretch factor between the two events is (20.88)/6 =  3.48. In the beacon frame the 
stretch factor is unity: 6 /6  =  1. Why? Because in this beacon frame flashes F and S 
occur at the same place, so beacon-frame clocks record the proper time directly. This 
proper time is less than the time between the two flashes as measuted in either 
laboratory or super-rocket frame. The larger value of time observed in laboratory and 
super-rocket frames shows up in Figure 5-11 (center and right). Among all conceiv­
able frames, the separation in time between the two flashes evidently takes on its 
minimum value in the beacon frame itself, the value of the proper time T.

Different reference frames: 
different times between two events

Time lapse minimum for frame 
in which events occur at same 
place

Hold it! In Sections 3.6 an d  5  ■ 7 you insisted that the time along a  straight worldline is 
a  MAXIM UM . Now you show us a  straight worldline along which the time is — you 
say —  a M INIM UM . Maximum or minimum? Please make up your mind!

— The worldline taken by the beacon wristwatch from F  to S is straight. It is straight 
^  whether mapped in the beacon frame itself or in the rocket or super-rocket frame. 

The beacon racks up 6 meters of proper time regardless of the frame in which we 
reckon this time. When we turn from this wristwatch time to what different
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laboratory time

LABORATORY
f, = 10 meters

rocket time

ROCKET
f', = 6 meters

SUPER-ROCKET
t", = 20.88 meters

FIGURE 5-11. Spacetime maps of Figure 5-3, modified to show the worldline o f the speeding 
beacon (heavy dashed line) and the segment of this line between emission F  of the first flash and  
the secondflash S (solid section of worldline). Emission F is taken as the zero ofspace and time. Time tj 
of the second emission S is different as recorded in different frames. The shortest time is recorded in that frame 
in which the two events occur at the same place— in this case the rocket frame.

FIGURE 5-12. Figure 5-10 stripped down 
to emphasize total proper time (wrist- 
watch time), pn-inted boldface along two 
different worldlines between the same two 
events O and B in a given reference frame. 
Among all possible worldlines connecting events 
O and B, the straight worldline registers maxi­
mal lapse of proper time.

free-float frames show for the separation in map time (latticework time, frame time) 
between the two flashes, however, the record displays a minimal value for that 
separation in time only in the beacon frame itself

In contrast. Figure 5-12 (Figure 5-10 in simplified form) shows two different 
worldlines that join events 0 and B mapped in the same reference frame. In this case 
we compare two different proper times: a proper rime of 10 meters racked up by a 
wristwatch carried along the direct course from 0 to B, and a proper time of 6 meters 
recorded by the wristwatch carried along on the kinked worldline OQB. In every such 
comparison made in the context of flat spacetime, the direct worldline displays 
maximum proper time. Caution: Conditions can be different in curved spacetime 
(Chapter 9).

In summary, two points come to the fore in these comparisons of the time between 
two events. (1) Are we comparing map time (frame time, latticework time) between 
those two events, pure and simple, free of any talk about any wotldline that might 
connect those events? Then separation in time between those events is least as 
mapped in the free-float frame that shows them happening at the same place. (2) Or 
are we directing our arrention to a worldline that connects the two events? More 
specifically, to the time racked up by a wrisrwarch toted along that worldline? Then 
we have to ask, is that worldline straight? Then it registers maximal passage of 
proper time. Or does it have a kink? Then the proper time racked up is not maximal.

When we find ourselves in a free-float frame and see a beacon zooming past in a 
straight line with speed v, how much is the factor by which our frame-clock time is 
stretched relative to the beacon wristwatch time? Answer: The stretch factor is

(stretch factor) =  y ■
1

(1 -r .2)i/2 (5-1)

How can we derive this famous formula? If you do not cover up the following lines 
and derive this answer on your own, here is the reasoning: Start with measurements in 
the laboratory frame. We know that for this rocket

(advance in proper time)^ =  (advance in lab time)^ ~  (lab distance covered)^

However, we want to compare lapses in laboratory time and proper time; laboratory 
distance covered is not of interest. For the laboratory observer the proper clock moving
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along a straight worldline covers the distance between the two events in the time 
between the events. Therefore this distance and time are related by particle speed:

(lab distance covered) =  (speed) X (advance in lab time)

Substitute this expression into the equation for proper time:

(proper time)^ =  (lab time)^ ~  (speed)^ X (lab time)^ 
=  (lab time)^ [1 ~  (speed)^}

This leads to an expression for the square of the stretch factor:

(lab time)^ . . _  1 1
(proper time)^

(stretch factor)^
1 — (speed)^ 1

where we use the symbol v — v ^ ^ /c  for speed. The equation for the stretch factor 
becomes

(stretch factor) — y —
1

(1 -  «̂ 2) 1/2
(5 -1 )

The stretch factor has the value unity when p =  0. For all other values of v the stretch 
factor is greater than unity. For very high relative speeds, speeds close to tha t o f light 
(v —* 1), the value of the stretch factor increases without limit.

The value of the stretch factor does not depend on the direction of motion of the 
rocket that moves from first event to second event: The speed is squared in equation 
(5-1), so any negative sign is lost.

The stretch factor is the ratio of frame time to proper time between events, where 
speed (=  p) is the steady speed necessary for the proper clock to pass along a straight 
worldline from one event to the other in that frame.

Stretch factor 
=  frame time/proper time

Stretch factor derived

The stretch factor also describes the Lorentz contraction, the measured shortening of a 
moving object along its direction of motion when the observer determines the distance 
between the two ends a t  the same time. For example, suppose you travel at speed v 
between Earth and a star that lies distance L away as measured in the Earth frame. Your 
trip takes time t  =  Ljv in the Earth-linked frame. Proper time T— your wristwatch 
time— is smaller than this by the stretch factor: T =  L/\v  X (stretch faaor)} =  (L/v) (1 
— iqow think of a very long rod that reaches from Earth to star and is at rest in the 
Earth frame. How long is that rod in your rocket frame? In your frame the rod is moving at 
speed V. One end of the rod, at the position of Earth, passes at speed v. A time T later in 
your frame the other end of the rod arrives —  along with the star —  also moving at speed 
V according to your rocket measurements. From these data you calculate that the length of 
the rod in your rocket frame— call it L' —  is equal to L' =  pT =  viLjp) (1 — r^)’''  ̂=  L 
(1 — r>̂ )Y2 'This is a valid measure of length. By this method the rod is measured to be 
shorter.

Lorentz-contraction by 
same “ stretch" factor

Finally, the stretch factor is often used as an alternative measure of particle speed: A 
particle moves with a speed such that the stretch factor is 10. This statement assumes 
that the particle is moving with constant speed, so that the separation between any pair 
of events on the particle worldline has the same stretch factor as the separation between 
any other pair. This way of describing particle speed can be both convenient and 
powerful. We will see (Chapter 7) that the total energy of a particle is proportional to 
the stretch factor.

Stretch factor as a measure 
of speed
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S A M P L E  P R O B L E M  5-2
ROUND TRIP OBSERVED IN 
DIFFERENT FRAME
Return to the alternative worldlines between 
events 0  and B, shown in Figure 5-10 and the 
spacetime maps in this sample problem. Measure 
these worldlines from a rocket frame that moves 
outward with the particle from 0  to Q and keeps on 
going forever at the same constant velocity. Show 
that an observer in this outward-rocket frame 
predicts the same proper time— wristwatch

SOLUTION

time —  for worldline OQB as that predicted in the 
laboratory frame. Similarly show that this 
outward-rocket-frame observer predicts the same 
proper time along the direct worldline OPB as does 
the laboratory observer. Finally, show that both 
observers predict the elapsed wristwatch time 
along OQB to be less than along OPB.

Here are laboratory and rocket spacetime maps for these round trips, simplified and 
drawn to reduced scale.

t
time

1

V

10 p \ q

A
c5 ------space — >■ space ■

lABORATORY 
SPACETIME MAP

OUTWARD-ROCKET 
SPACETIME MAP

Laboratory a n d  outward-rocket spacetime maps, each showing alternative worldlines (direct 
OPB a n d  indirect OQB) between events O a n d  B. Laboratory spacetime map: Figure 3-W , 
redrawn to a different scale. Proper times are shown on the laboratory spacetime map. Outward-rocket 
spacetime map: The rocket in which the outgoing particle is at rest. Portions of two invariant hyperbolas 
show how events Q and B transform. The direct worldline OPB has longer total proper time— greater 
aging— as computed using measurements from either frame.

Find x 'q and  t 'q. First compute space and time locations of events Q and B in the 
outgoing rocket frame — right-hand map. (Event 0  is the reference event, x  =  0 and t =  
0 in all frames by convention.) We choose the rocket frame so that the worldline segment 
OQ lies vertical and the outbound rocket does not move in this frame. As a result, event Q 
occurs at rocket space origin: x' q — 0. (Primes refer to measurements in the outward- 
rocket frame.) The rocket time Cq for this event is just the wristwatch time between 0  and 
Q, because the wristwatch is at rest in this frame: Cq =  3 meters.

In summary, using a prime for rocket measurements:

X q =  0
3 meters
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Find x 'b and  In the laboratory frame, the particle moves to the right from event 0 to 
event Q, covering 4 meters of distance in 5 meters of time. Therefore its speed is the 
fraction t' =  4 /5  =  0.8 of light speed. As measured in the rocket frame, the laboratory 
frame moves to the left with speed =  0.8 , by symmetry. Use equation (5-1) with v =
0.8 to compute the value of the stretch factor;

1 1 1 1 1
[1 -  (0.8)2}*/2 [1 -0 .6 4 ]V 2  [0.36}i/2 0.6

10
T

This equals the ratio of rocket time period t'g to proper time along the direct path OPB. 
Hence elapsed rocket time t'g =  (5 /3) X 10 meters =  50/3 meters of time. In this time, 
the laboratory moves to the left in the rocket frame by rhe distance x'g =  — vt' g =  
■“ (4/5) (50/3) =  ~  200/15 =  ~ 4 0 /3  meters. In summary for outgoing rocket:

40
— —  meters ■

50

13~ meters
3

I-------meters — 16— meters of
3 3

time

Events Q and B ate plotted on the rocket spacetime map.
C om pare W ristw atch Tim es: Now compute the total proper time —  wristwatch 

time, aging —  along alternative wotldlines OPB and OQB using rocket measurements. 
Direct wotldline OB has proper time Tgg given by the regular expression for interval:

2500 1600 900
= -----= 1 0 0  (meters)^

whence Toe = 1 0  meters computed from rocket measutements. This is the same value as 
computed in the laboratory frame (in which proper time equals laboratory time, since 
laboratory separation in space is zero).

Worldline OQB has two segments. On the first segment, OQ, proper time lapse is just 
equal to the rocket time span, 3 meters, since the space separation equals zero in the rocket 
ftame. For the second segment of this wotldline, QB, we need to compute elapsed time in 
this ftame:

^ QB ^
50 50 9 41

, = -------3 --- ----------- ---  —  meters
3 3 3 3

40
— —  meters

Therefore,

Î qb)̂ 0  qb)̂  

1681

{x

1600 81■ —  =  9 (meters)^
9

whence Tqb =  3 meters. So the total increase in proper time— the total aging— along 
worldline OQB sums to 3 +  3 =  6 meters as reckoned from outward-rocket measure­
ments. This is the same as figured from laboratory measurements.
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How can these weird results be true? In our everyday lives why don’t we have to take 
account of clocks that record different elapsed times between events, and rods that we 
measure to be contracted as they speed by us?

In answer, consider two events that occur at the same place in our frame. The proper 
clock moving in spacetime between these two events has speed zero for us. In this 
case the stretch factor has the value unity; the frame clock is the proper clock. The 
same is approximately true for events that are much closer together in space (mea­
sured in meters) than the time between them (also measured in meters). In these 
cases the proper clock moving between them has speed v— measured in meters/ 
meter— that is very much less than unity. That is, the proper clock moves very 
much slower than the speed of light. For such slow speeds, the stretch factor has a 
value that approaches unity; the proper clock records very nearly the same time lapse 
between two events as frame clocks. This is the situation for all motions on earth that 
we can follow by eye. For all such “ordinary-speed” motions, moving clocks and 
stationary clocks record essentially the same time lapses. This is the assumption of 
Newtonian mechanics: “Absolute, true, and mathematical time, of itself, and from 
its own nature, flows equably without relation to anything external . . .”

A similar argument leads to the conclusion that Lorentz contraction is negligible 
for objects moving at everyday speeds. Newton’s mechanics— with its unique 
measured time between events and its unique measured length for an object whether 
or not it moves— gives correct results for objects moving at everyday speeds. In 
contrast, for particle speeds approaching light speed (approaching one meter of 
distance traveled per meter of elapsed time in the laboratory frame), the denomina­
tor on the right of equation (5-1) approaches zero and the stretch factor increases 
without limit. Increased without limit, also, is the laboratory time between ticks of 
the zooming particle’s wristwatch. This is the case for high-speed particles in 
accelerators and for cosmic rays, very high-energy particles (mostly protons) that 
continually pour into our atmosphere from space. Newton’s mechanics gives results 
wildly in error when applied to these particles and theit interactions; the laws of 
relativistic mechanics must be used.

More than one cosmic ray has been detected (indirectly by the resulting shower of 
particles in the atmosphere) moving so fast that it could cross our galaxy in 30 seconds 
as recorded on its own wristwatch. During this trip a thousand centuries pass as 
recorded by clocks on Earth! (See Exercise 7-7.)

Events and worldlines exist 
independent of 

any reference frame

5.9 TOURING SPACETIME WITHOUT A  
REFERENCE FRAME

all you need is worldlines and events
An explosion is an explosion. Your birth was your birth. An event is an event. Every 
event has a concreteness, an existence, a reality independent of any reference frame. So, 
too, does a worldline that connects the trail of event points left by a high-speed 
sparkplug that flashes as it streaks along. Events mark worldlines, independent of any 
reference frame.

Worldlines also locate events. The intersection of two worldlines locates an event as 
clearly and sharply as the intersection of two straws specifies the place of a dust speck in 
agreat barn full of hay (Eigure 5-13). To say that an event marks a collision between 
two particles is identification enough. The worldlines of those two particles are rooted 
in the past and stretch out into the future. They have a rich texture of connections with 
nearby worldlines. The nearby worldlines in turn are linked in a hundred ways with
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FIGURE 5-13. The crossing of straws in a bam full of bay is a symbol for the worldlines that fill up 
spacetime. By their crossings and jogs, these worldlines mark events with a uniqueness beyond all need of 
reference frames. Straight worldlines track particles with mass; wiggly worldlines trace photons. Typical 
events symbolized in the map (black dots) from left to right: absorption of a photon; reemission of a photon; 
collision between a particle and a particle; collision between a photon and another particle; another collision 
between a photon and a particle; explosion of a firecracker; collision of a particle from outside with one of the 
fragments of that firecracker.

worldlines more remote. How then does one tell the location of an event? Tell first 
what worldlines thread the event. Next follow each of these worldlines. Name 
additional events that they encounter. These events pick out further worldlines. 
Eventually the whole barn of hay is cataloged. Each event is named. One can find one’s 
way as surely to a given intersection as the London dweller can pick her path to the 
meeting of St. James’s Street and Piccadilly. No numbers giving space and time 
location of an event in a given reference frame. No reference frame at all!

Most streets in Japan have no names and most houses no numbers. Yet mail is 
delivered just the same. Each house is named after its senior occupant, and everyone 
knows how the streets interconnect these named houses. Now print the map of 
Japanese streets on a rubber sheet and stretch the sheet this way and that. The postal 
carrier is not fooled. Each house has its unique name and the same interconnections 
with neighbor houses as on the unstretched map. So dispense with all maps! Replace 
them with a catalog or directory that lists each house by name, notes streets passing the 
house, and tabulates the distance to each neighboring house along the streets.

Similarly, the visual pattern of event dots on a spacetime map (spacetime diagram) 
and the apparent lengths of worldlines that connect them depend on the reference 
frame from which they are observed (for example, compare alternative spacetime 
maps of the same worldline shown in the figure in Sample Problem 5-2). However, 
each named event is the same for every observer; the event of your birth is unique to 
you and to everyone connected with you. Moreover, the segment of a worldline that

Locate house at intersection 
of streets

Locate event at intersection 
of worldlines
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Events and worldlines alone can 
describe Nature

connects one event with the next has a unique magnitude— the interval or proper 
time —  also the same for every observer. Therefore dispense with reference frames 
altogether! Replace them with a catalog or directory that lists each event by name, 
notes each worldline that threads the event, and tabulates the interval that connects the 
event with the next event along each worldline. With this directory in hand we can say 
precisely how all events are interconnected with each other and which events caused 
which other evenrs. That is the essence of science; in principle we need no reference 
frames.

But reference frames are convenient. We are accustomed to them. Most of us prefer 
to live on named streets with numbered houses. Similarly, most of us speak easily of 
space separations between events and time separations between the same events as if 
space and time separations were unconnected. In this way we enjoy the concreteness of 
using our latticework of rods and clocks while suffering the provinciality of a single 
reference frame. So be it! Nevertheless, with worldlines Nature gives us power to relate 
events —  to do science— without reference frames at all.

5.10 SUMMARY
straighter worldline? greater aging!

Events? Yes. Each event endowed with its own location in that great fabric we call 
spacetime? Yes. But time? No point in all that fabric displays any trace of anything we 
can identify with any such thing as the “time” of that event. Label that event with a 
“time” anyway? Sure. No one can stop us. Moreover, such labeling often proves quite 
useful. But it is our labeling! A different reference frame, a different wrisrwatch 
brought to that event along a different worldline yields a different time label for that 
event.

For our own convenience, then, we plot events on a spacetim e m ap (spacetim e 
diagram ) for a particular free-float frame and its latticework of rods and clocks. This 
map can be printed on the page of a book if events are limited to one line in space. 
Distance along this line is plotted horizontally on the spacetime map, with time of the 
event plotted vertically (Section 5.1). The time and space values of an event are 
measured with respect to a common reference event, plotted at the origin of the 
spacetime map. The invariance of the interval: (interval)^ =  (time)^ — (distance)^ 
between an event and the reference event corresponds to the equation of a hyperbola, 
the same hyperbola as plotted on the spacetime map of every overlapping free-float 
frame. The event point lies somewhere on the same invariant hyperbola as plotted 
on every one of these spacetime maps (Sections 5.2 and 5.3).

Billions of events sparkle like sand grains scattered over the spacetime map. A given 
event is unconnected to most other events on the map. Here we pay attention to 
particular strings of events that are connected. The w orld line of a particle connects in 
sequence events that occur at the particle (Section 5.4). The “ length” of a worldline 
between an initial and a final event is the elapsed time measured on a clock carried 
along the worldline between the two events (Section 5.6). This is called the proper 
time, wrisrwatch time, or aging along this worldline. The lapse of proper time is given 
the symbol T, in contrast to the symbol t for the frame time read on the latticework 
clocks in a given free-float frame.

Carry a wrisrwatch (or grow old!) along a worldline: This is one way to measure the 
total proper time along it from some initial event (such as the birth of a person or a 
particle) to some final event (such as death of a person or annihilation of a particle). 
This method is direct, experimental, simple. A second method? Calculate the interval 
between each pair of adjacent events that make up the worldline, and then add up all
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these intervals, assuming that each tiny segment is short enough to be considered 
straight. This method seems more bothersome and detailed, but it can be carried out 
by the observer in any free-float frame. All such observers will agree wirh one 
another— and with the clock-carrier — on the value of the total proper time from the 
initial event to the final event on the worldline (Section 5.6).

Among all possible worldlines between two given events, the straight line is the 
worldline of m axim al aging. This is the acmal worldline followed by a free particle 
that travels from one of these two events to the other (Section 5.6).

As measured in a given free-float ftame, the stre tch  factor = 1 / ( 1 — equals 
the ratio of elapsed frame rime t to elapsed proper time T along a segment of worldline 
in which the particle moves with speed v in that frame. The stretch factor is also the 
Lorentz contraction factor (Section 5.8): Locate, at the same time, the front and back 
ends of an object moving in a given free-float frame. These end locations will be (1 — 
t/2)V2 as far apart in that frame as they are in a frame in which the object is at rest.

Worldlines connect events. Like events, they exist independent of any reference 
frame. In principle, worldlines allow us to relate events to one another —  to do 
science— without using reference frames at all (Section 5.9).

REFERENCES
Newton quotation toward the end of Section 5.8: Sir Isaac Newton, Mathemati­
cal Principles of Natural Philosophy and His System of the World (Philosophiae 
Naturalis Principia Mathematica), Joseph Streater, London, July 5, 1686; 
translated from Latin —  the scholarly language of Newton’s time— by Andrew 
Motte in 1729, revised and edited by Florian Cajori and published in two 
paperback volumes (University of California Press, Berkeley, 1962).

Section 5.9 uses slightly modified passages from Charles W. Misner, Kip S. 
Thorne, and John Archibald Wheeler, Gravitation (W.H. Freeman, New York, 
1973), pages 5 -8 . Figure 5-13 is taken directly from this reference, its caption 
slightly altered from the original.

CHAPTER 5 EXERCISES

PRACTICE
5-1 more is less
The spacerime diagram shows two alternative world­
lines from event A to event D. The table shows co­
ordinates of numbered events in this frame. Time 
and space are measured in years.

a  One traveler moves along the solid segmented 
worldline from evenr A to events B, C, and D. Calcu­
late the time inctease on his wristwatch (proper clock)

(1) between event A and event B.
(2) between event B and event C
(3) between event C and event D.
(4) Also calculate the total proper time along 

worldline A, B, C, D.
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worldline from event A  directly to event D. Calculate 
the time increase on her wristwatch between events A 
and D.

c Which twin (solid-line or dotted-line traveler) 
is younger when they rejoin at event D?

5-2 transforming worldlines
The laboratory spacetime diagram in the figure shows 
two worldlines. One, the vertical line labeled B, is the 
worldline of an object that is at rest in this frame. The 
other, the segmented line that connects events 0, 1,2, 
and 3, is the worldline of an object that moves at 
different speeds at different times in this frame. The 
proper time is written on each segment and invariant 
hyperbolas are drawn through events 1,2, and 3. The 
event table shows the space and time locations in this 
frame of the four events 0, 1, 2, and 3.

a Trace the axes and hyperbolas onto a blank 
piece of paper. Sketch a qualitatively correct space- 
time diagram for the same pair of worldlines observed 
in a frame in which the particle on the segmented 
worldline has zero velocity between event 1 and event 
2.

b What is the velocity, in this new frame, of the 
particle moving along worldline B?

C On each straight portion of the segmented 
worldline for this new frame write the numerical value 
of the interval between the two connected events.

Event 0 x = 0 t = 0
Event 1 x =  3 .000 t= 4 .000
Event 2 x =  1.750 f=  7 .000
Event 3 X = 5 .000 t= 11.000

EXERCISE 5-2 . Two worldlines as recorded in the laboratory 
frame. Numbers on the segmented worldline are proper times along 
each straight segment.

5-3 mapmaking in spacetime
Note: Recall Exercise 1-6, the corresponding map­
making exercise in Chapter 1.

Here is a table of timelike intervals between events, 
in meters. The events occur in the time sequence 
ABCD in all frames and along a single line in space in 
all frames. (They do not occur along a single line on 
the spacetime map.)

INTERVAL 
to event A B c D

from
event

A 0 1.0 3.161 5.196
B 0 2.0 4.0
C
D

0 2.0
0

a Use a ruler and the hyperbola graph to con­
struct a spacetime map of these events. Draw this map



EXERCISE 5-3 MAPMAKING IN SPACETIME 1 6 5
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EXERCISE 5-3. Template of hyperbolas for converting intervals into a spacetime map.

on thin paper so you can lay it over the hyperbola 
graph and see the hyperbolas.

Discussion: How to start? With three arbitrary 
decisions! (1) Choose event A  to be at the origin of the 
spacetime map. (2) Choose event B to occur at the 
same place as event A. That is, event point B is located 
on the positive time axis with respect to event point A. 
After plotting B, use your ruler to draw this straight 
time axis through event points A  and B. Keep this line 
parallel to the vertical lines on the hyperbola graph in 
all later constructions. (3) Even with these choices, 
there are two spacetime locations (x, t) at which you 
can locate the event point C; choose either of these two

spacetime locations arbitrarily. Then go on to plot 
event D.

Analogy to  surveying: In surveying (using Eu­
clidean geometry) you locate all points a given dis­
tance from some stake by using that stake as origin 
and drawing a circle of radius equal to the desired 
distance. In a spacetime map (using Lorentz geome­
try) you locate all event points a given interval from 
some event by using that event point as origin and 
drawing a hyperbola with nearest point equal to the 
desired interval.

b Now take a new piece of paper and draw a 
spacetime map for another reference frame. Choose



1 6 6  EXERCISE 5-4 THE POLE AND BARN PARADOX

event D  to be at the origin of the spacetime map. This 
means that all other events occur before D. Hence 
turn the hyperbola plot upside down, so that the 
hyperbolas open downward. Choose event B to occur 
at the same place as D. Now find the locations of A 
and C using the same strategy as in part a.

e Find an approximate value for the relative 
speed of the two frames for which you have made 
spacetime plots.

d Hold one of your spacetime maps up to the 
light with the marks on the side of the paper facing 
the light. Does the map you see from the back also 
satisfy the table entries?

PROBLEMS
5-4 the pole and barn paradox
A worried student writes, “Relativity must be wrong. 
Consider a 20-meter pole carried so fast in the direc­
tion of its length that it appears to be only 10 meters 
long in the laboratory frame of reference. Let the 
runner who carries the pole enter a barn 10 meters 
long, as shown in the figure. At some instant the 
farmer can close the front door and the pole will be 
entirely enclosed in the barn. However, look at the 
same situation from the frame of reference of the 
runner. To him the barn appears to be contraaed to 
half its length. How can a 20-meter pole possibly fit 
into a 5-meter barn? Does not this unbelievable con­
clusion prove that relativity contains somewhere a 
fundamental logical inconsistency?”

EXERCISE 5-4. Fast runner with “20-meter" pole enclosed in a 
“10-meter" ham. In the next instant he will hurst through the hack 
door, which is made of paper.

Write a reply to the worried student explaining 
clearly and carefully how the pole and barn are treated 
by relativity without internal contradiaion. Use the 
following outline or some other method.

a  Make two carefully labeled spacetime dia­
grams, one an xt diagram for the barn rest frame, the 
other an x 't '  diagram for the runner rest frame. Re­
ferring to the figure, take the event “Q coincides with 
A” to be at the origin of both diagrams. In both plot 
the worldlines of A, B, P, and Q. Pay attention to the 
scale of both diagrams. Label both diagtams with the 
time (in meters) of the event “Q coincides with B” 
(derived from Lorentz transformation equations or 
otherwise). Do the same for the times of events “P 
coincides with A” and “P coincides with B.”

b Discussion question: Suppose the barn has 
no back door but rather a back wall of steel-reinforced 
concrete. What happens after the farmet closes the 
front door on the pole?

c Replace the pole with a line of ten tennis balls 
the same length as the pole and moving together with 
the same velocity as the pole. The farmer’s ten chil­
dren line up inside the barn, and each catches and 
stops one tennis ball at the same time as the farmer 
closes the front door of the barn. Describe the stop­
ping events as recorded by the observer riding on the 
last tennis ball. Plot them on your two diagrams.

5-5 radar speed trap
A highway patrolman aims a stationary radar trans­
mitter backward along the highway toward oncom­
ing traffic. A detector mounted next to the transmitter 
analyzes the radar wave reflected from an approach­
ing car. An internal computer uses the shift in fre­
quency of the reflected wave to reckon and display the 
car’s speed. Analyze this shift in frequency as in parrs 
a -  e or with some other method. Treat the car as a 
simple mirror and assume that the radar signals move 
back and forth along one line on the highway. Radar 
is an electromagnetic wave that moves with the speed 
of light.

The figure shows the worldline of the car, world­
lines of two adjacent maxima of the radar wave, and 
the wavelength A of incident and reflected waves.

a  From the 4 5-degree right triangle ABC, show 
that

A t =  tsAt +

From the 4 5-degree right triangle DBF, show that 

A/ =  4dd«,e -  fA i
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second

EXERCISE 5-5. Worldlines of approaching car and two radar wave maxima that reflect from the car. The speed of the car is greatly 
exaggerated.

Eliminate At from these two equations to find an 
expression for in terms of A;„adent and the
automobile speed v.

b The frequenq? /  of radar (in cycles/second) is 
related to its wavelength A in a vacuum by the for­
mula / =  c/A, where c is the speed of light (~  the 
speed of radar waves in air). Derive an expression 
or frequency yrefleaed the reflected radar signal in 
terms of f r e q u e n c y o f  the incident wave and the 
speed V of the oncoming automobile. Show that the 
result is

fte&ecad f\nad

C For an automobile moving at a speed v =  
t'conv/r that is a small fraction of the speed of light, 
assume that the fractional change in frequency of

reflected radar is small. Under this assumption, use 
the first two terms of the binomial expansion

(1 — z)” ^  1 — «z for lz| «  1

to show that the fractional change of frequency is 
given by the approximate expression

f
—  ~  2v

Substitute the speed of a car moving at 100 kilome- 
ters/hour (=27 .8  meters/second =  60 miles/hour) 
and show that your assumption about the small frac­
tional change is justified.

d One radar gun used by the Massachusetts 
Highway Patrol operates at a frequency of 
10.525 X 10^ cycles/second. By how many cycles/
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second is the reflected beam shifted in frequency when 
reflected from a car approaching at 100 kilometers/ 
hour?

e What discrimination between different fre­
quency shifts must the unit have if it can distinguish 
the speed of a car moving at 100 kilometers/hour 
from the speed of one moving at 101 kilometers/ 
hour?
Reference: T. M. Kalotas and A. R. Lee, American Journal of Physics, 
Volume 58, pages 187-188 (February 1990).

5-6 a summer evening's fantasy
You are standing alone outdoors at dusk on the first 
day of summer. You see Sun setting due west and the 
planet Venus in the same direction. On the opposite 
horizon the full Moon is rising due east. An alien ship 
approaches from the east and lands beside you. The 
occupants inform you that they are from Proxima 
Centauri, which lies due east beyond the rising Moon. 
They say they have been traveling straight to Earth 
and that their reduced approach speed within the 
solar system was such that the time stretch factor 
gamma during the approach was 5/3.

At the same instant that the aliens land, you see 
Sun explode. The aliens admit to you that earlier, on 
their way to Earth, they shot a laser light pulse at Sun, 
which caused this explosion. They warn that Sun’s 
explosion emitted an immense pulse of particles 
moving at half the speed of light that will blow away 
Earth’s atmosphere. In confirmation, shortly after the 
aliens land you notice that the planet Venus, lying in 
the direction of Sun, suddenly changes color.

You grab a passing human of the opposite sex and 
plead with the aliens to take you both away from 
Earth in order to establish the human gene pool else­
where. They agree and set the dials to flee in an 
easterly direction away from Sun at top speed, with 
time stretch factor gamma of 25/7. The takeoff is to 
be 7 minutes after the alien landing on Earth.

Do you make it?
Draw a detailed Earth spacetime diagram showing 

the events and worldlines of this story. Use the fol­
lowing information.

• Sun is 8 light-minutes from Earth.

• Venus is 2 light-minutes from Earth.

• Assume that Sun, Venus, Earth, and Moon all 
lie along a single direction in space and are rela­
tively at rest during this short story. The incom­
ing and outgoing paths of the alien ship lie along 
this same line in space.

• All takeoffs and landings involve instantaneous 
changes from initial to final speed.

• 5" -  3 ' =  42 and (25)2 -  {1? =  (24)2

a Plot EVENTS labeled with the following 
NUMBERS.
0. your location when the aliens land (at the 

origin)
1. Sun explodes
2. light from Sun explosion reaches you
3 . Venus’s atmosphere blown away
4. light from event 3 reaches you
5. you and aliens depart Earth (you hope!)
6. Earth atmosphere blown away

b Plot WORLDLINES labeled with the follow­
ing CAPITAL LETTERS.
A. your worldline
B. worldline of Earth
C. aliens’ worldline
D. worldline of Sun
E. worldline of Venus
E. worldline of light from Sun’s explosion

G. worldline of the “speed-one-half” pulse 
of particles from Sun’s explosion

H. worldline of light emitted when Venus 
loses atmosphere

J. terminal part of the worldline of the laser 
cannon pulse fired at Sun by the aliens

c Write numerical values for the speed v =  
i'conv/'̂  on every segment of all worldlines.

5-7 the runner on the train 
paradox

A letter sent to the Massachusetts Institute of Tech­
nology by Hsien-Yen Tsao of Los Angeles poses the 
following paradox, which he asserts disproves the 
theory of relativity. The Chairman of the Physics 
Department sends the inquiry along to you, asking 
you to respond to Mr. Tsao. You determine to make 
the answer clear, concise, decisive, and polite —  a 
personal test of your diplomacy and grasp of relativ­
ity.

T he setting: A train travels at high speed. A 
runner on the train sprints toward the back of the train 
with the same speed (with respect to the train) as the 
train moves forward (with respect to Earth). There­
fore the runner is not moving with respect to Earth.

T he paradox: We know that, crudely speaking, 
clocks on the train run “slow” compared to the Earth 
clock. We also know that the runner’s clock runs 
“slow” compared to the train clocks. Therefore the 
runner’s clock should run “doubly slow” with respect 
to the Earth clock. But the runner is not moving with 
respect to Earth! Therefore the runner’s clock must 
run at the same rate as the Earth clock. How can it 
possibly be that the runner’s clock runs "doubly slow” 
with respect to the Earth clock and also runs at the 
same rate as the Earth clock?
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5-8 the twin paradox put to 
rest— a worked example

Motto: The swinging line of 
simultaneity tells alH
Combine the Lorentz transformation with the space- 
time diagram to clear up —  once and for all! —  the 
solution to the Twin Paradox. An astronaut travels 
from Earth to Canopus (Chapter 4) at speed =  
99/101, arriving at Canopus t '  =  20 years later ac­
cording to her rocket clock, t =  101 years later ac­
cording to Earth-linked clocks —  which means that 
the stretch factor y  has the value 101/20.

The key idea is “lines of simultaneity” (boxed 
labels in the figure). A line of simultaneity connects 
events that occur “at the same time.” But events 
simultaneous in the Earth (“laboratory”) frame are 
typically not simultaneous in the rocket frame (Sec­
tion 3.4). Horizontal is the line of simultaneity on the 
Earth (“laboratory”) spacetime map that connects

events occurring at the same time in the Earth frame. 
Totally different— not a horizontal line! — is a line of 
simultaneity on the Earth spacetime map that con­
nects events simultaneous in the outgoing astronaut 
frame. To draw this line of outgoing-astronaut simul­
taneity, start with the inverse Lorentz transformation 
equation for time:

t ' =  +  yt

For the outgoing astronaut, =  99/101 and y  =  
101/20. We want the line of simultaneity that passes 
through turnaround event T. So let t '  =  20 years. 
Then:

20 =  -  (99/101)(101/20)x -b (101/20) t 

Multiply through by 20/101:

400/101 =  - (9 9 /1 0 1 )x  +  r

time

EXERCISE 5-8. Earth spacetime map of the trip to Canopus and 
hack. At the astronaut arrives at Canopus, her colleagues in her 
outgoing reference frame record along line AT events simultaneous 
with this arrival, including Earth-clock reading of 3-96 years at 
A. At Canopus the astronaut changes frames, thus changing the line

of simultaneity, which swings to BT. Ar she leaves Canopus, her 
new colleagues take an Earth-clock reading of 1 9 8 .0 4  years at B. 
At turnaround, the ticks on the Earth clock along worldline segment 
AB go from the outward-moving astronaut's future to the incoming 
astronaut’s past.
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which yields

/ =  0.980 x - f  3.96

This is the equation for a straight line passing 
through event points A  and T in the spacetime dia­
gram. It is the line of simultaneity for the outgoing 
astronaut, connecting all events simultaneous with 
the arrival of the rocket at Canopus (simultaneous in 
that frame). Among these events is event A, the Earth 
clock reading of 3.96 years, which occurs ar Earth 
position x  =  0. In brief, at the moment the rocket 
arrives at Canopus, the Earth clock reads 3.96 years as 
observed in the outgoing rocket frame.

Now the astronaut jumps to the incoming rocket 
frame. This reverses the velocity of the astronaut with 
respect to the Earth-linked frame— and so reverses the 
slope of the line of astronaut simultaneity. This new 
line of astronaut simultaneity passes through event 
points B and T in the figure. Event B is the Earth clock 
reading of 202 — 3.96 =  198.04 years.

To go back over the astronaut trip while looking at 
the spacetime map is (finally!) to solve the Twin 
Paradox. As the astronaut travels outward toward 
Canopus, many colleagues follow her at the same 
speed, with clocks synchronized in her frame. As they 
whiz past Earth, each records the reading on the Earth 
clock. Later analysis leads them to agree that the time 
between ticks of Earth’s clock is longer than the time 
between ticks of their own outward-moving clocks. 
(They say, “The Earth clock mns slow.’’) At any 
event point on her outward worldline, the astronaut’s 
line of simultaneity slopes upward to the right in the 
Earth spacetime diagram, as shown in the figure. 
Simultaneous with astronaut arrival at Canopus 
(event T, when all outward-moving clocks read 20 
years), one of her colleagues reads a time 3.96 years on 
the Eanh clock (event A).

Now the astronaut jumps from the outward-mov­
ing rocket to a returning rocket. She inherits a com­
pletely new set of colleagues, with a new set of synchro­
nized clocks. The astronaut’s new line of simultaneity 
slopes upward to the left in the Earth spacetime dia­
gram. Simultaneous with her deparmre from Cano­
pus (event T, when all inwatd-moving clocks read 20 
years), one of her new colleagues reads a time 202 — 
3.96 =  198.04 years on the passing Earth clock 
(event B). Thereafter new colleague after new col­
league streaks past Earth, recording the fact that Earth 
clock ticks are farther apart in time than the ticks on 
their own clocks. (They say, “The Earth clock runs 
slow.’’).

The analysis so far accounts for the short time 
segments OA and BC recorded by the Earth clock on 
its vertical wotldline AC What about the omitted

time lapse AS? This is recorded, sure enough, by the 
Earth clock plowing forward along worldline OC in its 
comfortable single free-float frame. However, the 
story of time AB is quite different for the turn-around 
astronaut. Before she reaches turnaround at T, events 
on line AB are in her future. All those Earth clock ticks 
are yet to be recorded by her outgoing colleagues. 
These events lie above her line of simultaneity A T  a.s 
she arrives at Canopus at T. However, as she turns 
around, her line of simultaneity also slews forward, 
swinging from line A T  to line BT. Suddenly the 
events on line AB— all those intermediate ticks of the 
Earth clock— are in the astronaut’s past. These 
events lie below the line of simultaneity BT  as she 
starts back at T. Her outward-moving colleague reads 
3.96 years on the Earth clock as she teaches Canopus; 
an instant later on her clock, her new inward-moving 
colleague reads 198.04 on the Earth clock.

Shall we say that the Earth clock “jumps ahead’’ as 
the astronaut turns around? No! Utterly ridiculous! 
Eor what single observer does it jump ahead? Not for 
the Earth observer. Not for the outgoing set of clock- 
readers. Not for the returning set of clock readers. For 
whom then? Nobody! A t the same time as she reaches 
Canopus— old meaning of simultaneous! —  the as­
tronaut’s outgoing colleague records 3.96 years for 
the Earth clock. A t the same time as she leaves 
Canopus— new meaning of simultaneous! —  her new 
ingoing colleague records 198.04 years on the Earth 
clock. The astronaut has nobody but herself to blame 
for her misperception of a “jump” in the Earth clock 
reading.

The “lost Earth time” AB in the figure makes 
consistent the story each observer tells about the 
clocks. Simple is the story told by the Earth observer: 
“My clock ticked along steadily at the ‘proper’ rate 
from astronaut departure to astronaut return. In con­
trast, ticks on the astronaut clock were far apart in 
time on both the outgoing and incoming legs of her 
trip. We agree that her total ticks are less than my 
total ticks: she is younger than I when we meet 
again.” More complicated is the astronaut account of 
clock behavior: “Ticks on the Earth clock were far 
apart in time as I traveled to Canopus; ticks on the 
Earth clock were also far apart as I traveled home 
again. But as I turned around, a whole bunch of Earth 
clock ticks went from my future to my past. This 
accounts for the larger number of total ticks on the 
Earth clock than on my clock during the trip. We 
agree that I am younger when we meet again.”

So saying, the astronaut renounces her profession 
and becomes a stand-up comedian.
Reference: E. Lowry, American Journal o f Physics, Volume 31, page
59 (1963).



6.1 LIGHT SPEED: LIMIT O N  CAUSAUTY
no signal reaches us faster than light

Nine-year-old Meredith waves her roy magician’s wand and shouts, "Sun is exploding 
right now!” Is she right? We have no way on Earth of knowing— at least not for a 
while. Sun lies 150,000 million meters from Earth. Therefore it will take 150,000 
million meters of light-rravel time for the first light flash from the explosion to reach 
us. This equals 500 seconds— 8 minutes and 20 seconds. We will just have to wait 
and see if Meredith is correct . . .

When 8 minutes and 20 seconds pass, we have evidence that Meredith was 
mistaken; Looking through our special dark glasses, we see no exploding Sun.

But Meredith’s wand has started us thinking. What in the laws of nature prohibirs 
rhe wave of her wand from being the signal fot Sun to explode at that same instant? 
Or —  more reasonably, given the awesome event— what prevents Meredith from 
having instanraneous warning, so that she raises her wand simultaneously with Sun’s 
explosion in order to give us (in light of later developments) a false impression of her 
power?

Both questions have the same answer; “The speed of light.” Whatever her powers, 
Meredith cannot affect Sun in less than 500 seconds; neither can a warning signal reach 
us from Sun in less time than that. All during that intervening 500 seconds we would 
see the accustomed round shape of Sun, apparently healthy as ever.

More generally, one event cannot cause another when their sparial separation is 
greater rhan the distance light can travel in the time between these events. Light speed 
sets a limit on causality. No known physical process can overcome this limit; not 
gravity, not some other field, not a zooming particle of any kind. "Spacetime interval” 
quantifies this limit on causality. Interval between far-away events —  unlike distance 
between far-away points —  can be zero. In this and other ways rhe spacerime geometry 
of the real world differs fundamentally from the space geometry of Euclid’s 2300- 
year-old rextbook.

171

Signal Sun with super speed?

No, just speed of light
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uared distance: Positive or zero

Squared interval: 
Positive, zero, or negative

Timelike interval: 
Time part dominates

6.2 RELATION BETWEEN EVENTS: 
TIMELIKE, SPACELIKE, OR LIGHTLIKE

minus sign yields three possible relations 
between pairs of events

Using Euclidean geometry, a surveyor reckons the distance between two steel stakes 
from the sum of the squates of the northward and eastward separations of these stakes:

(distance)^ =  (northwatd separation)^ +  (eastward separation)^

In consequence, in Euclidean geometry a distance— or its square —  always has a 
positive value or zero.

In contrast, the spacetime interval between events in Lorentz geometry arises from 
the difference of squares of time and space separations:

(interval)^ =  (separation in time)^ — (separation in space)^

In consequence of the minus sign, this equation yields a number that may be positive, 
negative, or zero, depending on whether the time or the space separation predomi­
nates. Moreover, whichever of these three descriptions characterizes the interval in one 
free-float frame also characterizes the interval in any other free-float frame. Why? 
Because the spacetime interval between two events has the same value in all overlap­
ping free-float frames. In the threefold possibilities for an interval, nature reveals the 
causal relation between events.

An interval between two events earns the name tim elike or spacelike or ligh t­
like depending on whether the time part predominates, the space part predominates, 
or the time and space parts are equal, respectively, as shown in Table 6-1. Eor 
convenience, the minus sign is placed so that the resulting squared interval is greater 
than or equal to zero.

T im elike Interval: We picture the sequence of sparks emitted by a moving 
sparkplug. Points representing these sparks on the spacetime map trace out the 
worldline of the particle (Chapter 5). No material particle has ever been measured to 
travel faster than light. Every material particle always travels less than one meter of 
distance in one meter of light-travel time. The sparks emitted by the particle have a 
greater time separation than their separation in space. In other words, the worldline of 
a particle consists of events that have a timelike relation with one another and with the 
initial event. We say that a material particle follows a tim elike w orldline.

The interval T between two timelike events reveals itself to the observer in any 
free-float frame:

(timelike interval)^ =  =  (time separation)^ — (space separation)^ (6-1)

6 - T ^

CLASSIFICATION OF THE RELATION BETWEEN TWO EVENTS
Description Squared interval is named and reckoned

Time part of interval dominates space part 
Space part of interval dominates time part 
Time part of interval equals space part

(timelike interval)  ̂=  =  (time)  ̂— (distance)  ̂
(spacelike interval)  ̂=  =  (distance)  ̂— (time)  ̂
(lightlike interval)  ̂=  0 =  (time)^ — (distance)^
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left-rocket time 

A

laboratory time right-rocket time

left-rocket space

LEFT-MOVING ROCKET FRAME LABORATORY FRAME
FIGURE 6-1. Events A a n d  B form  a  timelike p a ir  (w ith event A arb itra rily  chosen as reference 
event), here recorded in the spacetime maps o f three free-float fram es, Point B lies on a hyperbola 
opening along the time axis in each frame. The shortest time between events A and B is recorded in the 
laboratory frame, the frame in which the two events occur at the same place.

RIGHT-MOVING ROCKET FRAME

Same two sparks registered in different frames? Different records for the separation 
in time between those sparks. Different records for the separation in space. Same figure 
for the timelike interval between them!

Nobody can keep us from tracing out on one and the same diagram (Figure 6-1) 
the very different records for the separation AB  that observers get in different free-float 
frames. One frame? One point on the diagram. Another frame? Another point on the 
diagram. And so on. These many records for the same pair of events AB  trace out a 
hyperbola. This hyperbola opens out in the time direction.

The two sparks, A and B— definite locations though they occupy in spacetime— 
nevertheless register in different frames of reference as having different separations in 
reference-frame time. Among the many conceivable frames, which one records this 
separation in time as smallest? Answer: The frame in which spark B occurs at the same 
place as spark A. In other words, the frame that happens to move along in sync with 
the sparkplug, even if only briefly. In that frame the clock records a separation in time 
between A and B identical with the timelike interval AB.

As seen in the left-moving rocket frame in Figure 6-1, spark B lies to the right of 
spark A. In contrast, spark B occurs to the left of spark A in the right-moving rocket. 
The position of B relative to A depends on the reference frame from which it is 
measured. For a pair of events separated by a timelike interval, labels “right” and 
“left” have no invariant meaning: they are frame-dependent.

Spacelike Interval: The interval between two events A and D  is spacelike when 
the space part predominates over the time part. Such was the case for a possible 
explosion of Sun (event A) and Meredith’s wand waving (event D), simultaneous with 
A as recorded in the Earth frame (Section 6.1). Events A and D, if they occurred, 
would be separated in the Earth-Sun frame by a distance of 150,000 million meters 
and separated by a time of zero meters. Clearly the space part predominates over the 
time part! Whenever the space part predominates, we call the relation between the two 
events spacelike.

The interval s (sometimes called by the Greek letter sigma, (T) between two 
spacelike events reveals itself to the observer in any free-float frame:

Timelike interval:
Invariant hyperbola opens 
along time axis

Spacelike interval: 
Space part dominates

(spacelike interval)^ =  =  (space separation)^ — (tim e separation)^ (6 -2)



1 7 4  CHAPTER 6 REGIONS OF SPACETIME

Spacelike interval: 
Invariant hyperbola opens 

along space axis

Events A and D  registered in different frames? Then different records for the separa­
tion in time between those events. Also different records for the separation in space. 
Same numerical value for rhe spacelike interval between rhem!

We plot on another spacetime diagram (Figure 6-2) all of the very differenr records 
for the separation AD that observers get in different free-float frames. One frame? One 
point on the diagram. Another frame? Another poinr on the diagram. And so on. 
These many records for the same pair of evenrs AD trace out a hyperbola. This 
hyperbola opens out in the space direction.

The two events, A and D — definite locations though they occupy in spacetime — 
nevertheless register in different frames of reference as having different separations in 
reference-frame space. Among the many conceivable frames, which one records this 
separation in space as smallest? Answer: The frame in which spark D occurs at the 
same time as spark A. In that frame a long srick records a separation in space between A 
and D identical with the spacelike interval, AD. This is called the p ro p e r d istance 
between the two spacelike events.

In the Earth -  laboratory frame in Figure 6-2, Meredith waves her wand (event D) 
at the same time as Sun explodes (event A). In the right-moving rocket frame Sun 
explodes after Meredirh waves her wand. In the left-moving rocket frame Sun 
explodes before the wand wave. For a pair of events separated by a spacelike interval, 
labels “before” and “after” have no invariant meaning: they are frame-dependent. To 
allow the wand to control Sun would be to scramble cause and effect!

No particle —  not even a flash of light —  can move between two events connected 
by a spacelike interval. To do so would require it to cover a distance greater than the 
time available to cover rhis disrance (space separation greater than time separation). In 
brief, it would have to travel faster than light. This is alternative evidence that two 
events separated by a spacelike interval cannot be causally connected: one of them 
cannot “get at” the other one by any possible signal.

LEFT-MOVING ROCKET FRAME LABORATORY FRAME RIGHT-MOVING ROCKET FRAME
FIGURE 6-2. The spacelike p a ir  of events A a n d  D {with event A arb itra rily  chosen as reference 
event) as recorded in the spacetime maps of three free-float fram es. Point D lies on a hyperbola 
opening along the space axis in every rocket and laboratory frame. The shortest distance between these events 
is recorded in the laboratory frame, the frame in which the two events occur at the same time. A heavy line 
represents the spacetime separation AD. No particle can travel along this line; the speed would be greater 
than light speed— and would be infinitely great as measured in the laboratory frame, since the particle 
would have to cover the distance from A /o D in zero time!
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E PR
RELATIONS BETWEEN EVENTS
Events 1,2, and 3 all have laboratory locations y — z — 0. Their x  and t measurements are 
plotted on the laboratory spacetime map.

a. Classify the interval between events 1 and 2; timelike, spacelike, or lightlike.

b. Classify the interval between events 1 and 3.

c. Classify the interval between events 2 and 3.

7
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SOLUTION
a. For event 1, / =  2 meters and x  — I meter. For event 2, t = 7  meters and x  =  4 

meters. The squared interval between them: (interval)^ — { 7 ~  2Y  — (4 — 1)  ̂=  
5^“ 3  ̂=  2 5 “ 9== 16 (meters)^. The time part is greater than the space part, so 
the interval between these two events is timelike: T =  4 meters.

b. For event 1, t =  2 meters and x  =  I meter. For event 5, t =  5 meters and x  =  6 
meters. The squared interval between them: (interval)^ =  (5 “  2)^ — (1 — 6)^ =  
3  ̂— 5  ̂=  9 ~ 2 5  =  “  16 (meters)^. The space part is greater than the time part, 
so the interval is spacelike: s =  4 meters. (For spacelike intervals, we subtract the 
squared time part from the squared space parr before taking the square root.)

c. For event 2, / =  7 meters and x  =  4 meters. For event 3 ,^ = 5  meters and x  =  6 
meters. The squared interval between them: (interval)^ ~{7~~  5)  ̂— (4 — 6)^ =  
2  ̂ — 2  ̂ =  4 — 4 =  0 (meters)^. The time part equals the space part, so the 
interval is lightlike-, it is a null interval.

L ightlike In terval (N ull Interval): Two events stand in a lightlike relation 
when the interval between them is zero:

(time separation)^ — (space separation)^ — 0 Lightlike interval;
Time separation equa 
space separation

or

magnitude of (separation in time) — (distance in space) [for lightlike interval] (6-3)
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Lightlike interval: 
Plotted along ±45 degree lines

An interval that is lightlike? A separation in time between two events, A  and G, 
identical to the distance in space between them? What does this condition mean? This: 
A pulse of light can fly directly from event A  and arrive with perfect timing at event G. 
How come? Distance in meters between the two locations measures the meters of time 
required for light to fly from one place to the other. Separation in time between the two 
events represents the time available for the trip. Time available equals time needed? 
Guarantee that the pulse from A arrives in coincidence with event G\ More generally, 
whenever the influence of one event, spreading out at the speed of light, can directly 
affect a second event, then the interval between those two events rates as lightlike, zero, 
null.

Only light (“photons”), neutrinos, and gravitons can move directly between two 
events connected by a lightlike interval. Only by means of one of these light-speed 
particles can the one event in a lightlike pair cause the other.

The spherical out-going pulse of light from an event. A, may trigger two widely 
separated events, E and G(Figure 6-3). Does this common genesis imply that E and G 
occur at the same time? Yes and no! Yes, there’s always a free-float reference frame in 
which the two daughter events appear as simultaneous. That frame —  for no good 
reason — we call the laboratory frame in Figure 6-3. In other frames of reference —  for 
example, the left-moving rocket frame in Figure 6-3 —  the clocks show that E occurs 
before G. There are still other frames — the right-moving rocket frame is one —  in 
which the clocks register E and G in the opposite order of time. But no frame shows 
either £ or G in the past of A.

Hold it! Aren't spacelike separations impossible? I understand timelike a n d  lightlike 
separations between two events, because a  particle— or a t least a  light fla sh — can 
travel between them. Not even a  light flash, however, can travel from one event to a 
second event separated from the first by an interval th at is spacelike. The first event 

cannot possibly cause the second event in the spacelike case. Therefore a  spacelike 
interval cannot arise in nature. So why talk about it?

left-rocket time laboratory time

A
right-rocket time

A

G . '

laboratory space right-rocket space

LEFT-MOVING ROCKET FRAME LABORATORY FRAME RIGHT-MOVING ROCKET FRAME

FIGURE 6-3. Two lightlike p a irs  of events AE a n d  AG {with event A arb itra rily  chosen as 
reference event) as recorded in spacetime maps o f three free-float fram es. A flash originates at A 
and spreads outward from the center of a rod at rest in the laboratory frame. Events E and G  are receptions of 
this flash at the two ends of the rod as recorded by different observers. In the laboratory frame, reception events 
E and G  occur at the same time. In the right-moving rocket frame, the rod moves to the left, so event G  occurs 
sooner than event E. In the left-moving rocket frame, the rod moves to the right, so event E occurs sooner than 
event G.
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Oops! A spacelike interval between two events certainly can and does arise in nature.
Signals from the supernova labeled 1987A reported that event to us in 1987, 

which was 150,000 years after the explosion occurred. Yet occur it did! No astron­
omer of Babylonian, Egyptian, or Greek days reported it, nor could they even know 
of it. Yet it had already happened for them. That event separated itself from each of 
them by a spacelike interval. Only the advance of time to the year 1987 brought 
down the interval between that explosion and Earthbound observers from spacelike 
to lightlike. In that year a light pulse carried the earliest possible report of that 
explosion to our eyes. And look today? See no explosion at that location in the sky. 
The light from it has passed us by. Our present relation to that event? Timelike!

6.3 LIGHT CONE: PARTITION IN 
SPACETIME

invariance of the interval preserves cause and 
effect

Thus far in dealing with the interval between two events, A  and B, we have considered 
primarily the situation in which these events lie along a single direction in space — on 
the reference line where the laboratory and rocket reference clocks are located. In 
contrast, the surveyors in our imaginary kingdom made use of two space dimensions 
— northward and eastward. We know, however, that Euclidean space is truly three- 
dimensional. A surveyor measuring hilly terrain soon appreciates the need for a third 
dimension: the direction vertically upward! The measure of distance in three dimen­
sions requires a simple extension of the expression for distance in two dimensions: The 
square of the distance becomes the sum of the squares of three mutually perpendicular 
separations:

(distance)^ =  (north separation)^ +  (east separation)^ +  (up separation)^

Euclidean space requires three dimensions. In contrast, spacetime, which includes 
the time dimension, demands four. The expression for the square of a timelike interval 
now has four terms: a positive term (the square of the time separation) and three 
negative terms (the squares of the separations in three space dimensions).

(interval)^ =  (time separation)^ — (north separation)^
— (east separation)^ — (up separation)^

The three space terms can be represented by the single distance term in the equation 
above, yielding

(timelike interval)^ =  (time separation)^ — (distance)^
(spacelike interval)^ =  (distance)^ ^  (time separation)^
(lightlike interval)^ =  0 =  (time separation)^ — (distance)^

or, for the lightlike interval,

magnitude of (separation in time) =  (distance in space) tiightlike interval] (6-3)

For pairs of events with lightlike separation, the interval equals zero. The zero 
interval is a unique feature of Lorentz geometry, new and quite different from

Interval generalized to 
three space dimensions
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p r o b l e m  6 - 2
EXPLETIVE DELETED
At 12:00 noon Greenwich Mean Time (GMT) an 
astronaut on Moon drops a wrench on his toe and 
shouts “Damn!” into his helmet microphone 
(event A), carried by a radio signal toward Earth. 
At one second after 12:00 noon GMT a short

circuit (event D) temporarily disables the receiving 
amplifier at Mission Control on Earth. Take Earth 
and Moon to be 3.84 X 10® meters apart in the 
Earth frame and assume zero relative motion.

a. Does Mission Control on Earrh hear the astronaut’s expletive?

b. Could the astronaut’s strong language have caused the short circuit on Earth?

c. Classify the spacetime separation between events A and D: timelike, spacelike, or 
lightlike.

d. Find the proper distance or proper time between events A  and D.

e. For all possible rocket frames passing between Earth and Moon, find the shortest 
possible distance between events A  and D. In the rocket frame for which this 
distance is shortest, determine the time between the two events.

SOLUTION
a. In one second, electromagnetic radiation (light and radio waves) travels 3.0 X 

10® meters in a vacuum. Therefore the radio signal does not have time to travel 
the 3.84 X 10® meters between Moon and Earth in the one second available 
between the events A and D  as measured in the Earth frame. So Mission Control 
does nor hear the exclamation.

b. No signal travels faster than light. So the astronaut’s strong language cannot have 
caused the short circuit.

c. The space part of the separation between events (3.84 X 10® meters) dominates 
the time part (one second =  3.0 X 10® meters). Therefore the separation is 
spacelike.

d. The square of the proper distance s comes from the expression

f2 = (space separation)^ — (time separation)^

e.

— (3.84 X 10® meters)^ — (3.00 X 10* meters)^
=  (14.75 -  9.00) X 10*6 (meters)^
=  5.75 X 10*6 (meters)^

The proper distance equals the square root of this value: r =  2.40 X 10® meters

The proper distance equals the shortest distance between two spacelike events as 
measured in any rocket frame moving between them (Figure 6-2, laboratory 
map). Hence 2.40 X 10® meters equals the shortest possible distance between 
events A and D. In the particular rocket frame for which the distance is shortest, 
the time between the two events has the value zero —  events A and D  are 
simultaneous in this frame.
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S A M P L E  P R O B L E M
SUNSPOT
Bradley grabs his sister’s wand and waves it, 
shouting “Sunspot!” At that very instant his fa­
ther, Lloyd, who is operating a home solar obser­
vatory, sees a spot appear on the face of Sun. Let 
event E be Bradley waving the wand and event A

be eruption of the sunspot at the surface of Sun 
itself The Eatth-Sun distance equals approxi­
mately 1.5 X 10“  meters. Neglect relative motion 
between Earth and Sun.

a. Is it possible that Bradley’s wand waving caused the sunspot to erupt on Sun?

b. Is it possible that the sunspot erupting on Sun caused Bradley to wave his wand?

c. Classify the spacetime separation between events A  and E: timelike, spacelike, or 
lightlike.

d. Find the value of ptoper distance ot propet time between events A and E.

e. For all possible rocket frames passing between Earth and Sun, find the shortest 
possible distance or the shortest possible time between events A and E.

SOLUTION
a. Light travels 1 meter ot distance in 1 meter of time — or 1.5 X 10“  meters of 

distance in 1.5 X 10^* meters of time. Hence in the Earth-Sun frame, eruption of 
the sunspot (event A) occurted 1.5 X 10“  meters of time before Bradley waved 
the wand (event E). So Bradley’s wand waving could not have caused the 
eruption on Sun.

b. On the other hand, it is possible that eruption of the sunspot caused Bradley to 
wave his wand: He raises the wand in the air, looks over his father’s shoulder, and 
waves the wand as the spot appears on the projection screen. (We neglect his 
reaction time.)

c. Events A and E are connected by one light pulse; their space and time separations 
both have the value 1.5 X 10“  meters in the Eatth frame. Therefore the 
spacetime separation between them is lightlike.

d. Space and time separations between events A and E are equal. Therefore the 
interval between them has value zero. Hence proper time between them —  equal 
to ptoper distance between them — also has value zero.

e. The interval is invariant. Thetefore all possible ftee-float rocket frames passing 
between Earth and Sun reckon zero interval between events A and E. This means 
each of them measures space separation between events A and E equal to the time 
separation between these events. The common value of the space and time 
separations are not the same for all rocket frames, but they are equal to one 
another in every individual rocket frame. We are asked to find the shottest 
possible value for this time.

Think of a tocket just passing Sun as the sunspot erupts, the rocket headed 
towatd Earth at nearly light speed with respect to Earth. Rocket lattice clocks 
record the light flash from the sunspot moving away from the rocket at standard 
speed unity. However, these clocks recotd that Earth lies very close to Sun 
(Lorentz contraction of distance) and that Earth rushes toward the rocket at nearly 
light speed. Therefore light does not travel far to get to Earth in this rocket frame; 
neither does it take much time. For a rocket moving arbitrarily close to light 
speed, this distance between A and E approaches zero, and so does the time
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S A M P L E  P R O B L E M  6 - 3

between A  and E. Hence the shortest possible distance between A  and E— equal 
to the shortest possible time between A  and E— has the value zero. But this 
constitutes a limiting case, since rocket speed may approach but cannot equal the 
speed of light in any free-float frame.

Light flash traces out light cone 
in spacetime diagram

anything in Euclidean geometry. In Euclidean geometry it is never possible for distance 
AG  between two points to be zero unless all three of the separations (northward, 
eastward, and upward) equal zero. In contrast, interval AG  between two events can 
vanish even when separation in space and separation in time are individually quite 
large. Equation (6-3) describes the separation between lightlike events, but now 
separation in space may show up in two or three space dimensions as well as one time 
dimension. The distance in space is always positive.

It is interesting to plot on an appropriate map locations of all events, G, Gj, G ,̂ 
Gj, , that can be connected with one given event A by a single spreading pulse
of light. Every such future event has a distance in space from A  identical to its delay in 
time after A. Only so can it satisfy the requirement (6-3) for a null interval. For it:

(future time with respect to A) =  d- (distance in space from A) [lightlike interval] (6-4)

It is equally interesting to display —  and on the same diagram —  all the events H, Hj, 
H2 , Hj, . . . that can send a light pulse to A. Every such event fulfills the condition

(past time relative to A) =  — (distance in space from A) (for lightlike interval] (6-5)

Both of these equations satisfy the magnitude equation (6-3).
In Figure 6-4 we suppress display of a third space dimension in the interest of 

simplicity. We limit attention to future events G, G„ G2 , . . . and past events H, Hj, 
H2 , . . . that lie on a north-south/east-w est plane in space. A flash emitted from 
event A expands as a circle on this space plane. As it spreads out from event A, this 
circle of light traces out a cone opening upward in the spacetime map of Figure 6-4. 
This is called the fu tu re  light cone of event A. The cone opening downward traces 
the history of an in-coming circular pulse of radiation so perfectly focused that it 
converges toward event A, collapsing exactly at event A at time zero. This downward­
opening cone has the name past light cone of event A. All the events G, G ,̂ 
G2 , . . . lie on the future light cone of event A, all events H, H„ H2 , . . .  on its 
past light cone.

Numerous as the events may be that lie on the light cone, typically there are many 
more that don’t! Look, for example, at all the events that occur 7 meters of time later 
than the zero time of event A. On the spacetime map, these events define a plane 7 
meters above the r =  0 plane in which event A lies, and parallel to that plane. The light 
cone intersects this plane in a circle (circle in the present map; a sphere in a full 
spacetime map with three space dimensions). An event on the plane falls into one or 
another of three categories, relative to event A, according as it lies inside the circle (as 
does B in Figure 6-4), on it (as does G), or outside it (as does D).

The light cone is unique to Lorentz geometry. It gives nature a structure beyond any 
power of Euclidean geometry. The light cone does more than divide events on a single 
plane into categories. It classifies every event, everywhere in spacetime, into one or 
another of five distinct categories according to the causal relation that event bears to 
the chosen event. A:
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FIGURE 6-4. Light cone as p artitio n  in spacetime; perspective three-dimensional spacetime map 
showing eastw ard, northw ard, a n d  time locations of events occurring on a  f la t  p lan e in space.
Events G, Gj, Gj, and Gj are on the future light cone of event A; events H, H,, H2, and Hj are on its past 
light cone. See also Figure 6-5.

1. Can a material partic le  emitted at A  affect what is going to happen at El 
If so, B lies inside the fu tu re  light cone of A and forms a timelike pair with 
event A.

2. Can a light ray emitted at A affect— with no time to spare— what is going 
to happen at G?
If so, d ie s  on the fu tu re  light cone of A and forms a lightlike pair with event 
A.

3. Can no effect w hatever produced at A affect what happens at D?
If so, D lies outside the future and past light cones of A and forms a spacelike 
pair with event A. It lies in the absolute elsewhere of A.

4. Can a material partic le  emitted at J  affect what is happening  at A?
If so, J  lies inside the past light cone of A and forms a timelike pair with 
event A.

5. Can a light ray emitted at H  affect — with no time to spare —  what is 
happen ing  at A?
If so, H  lies on the past light cone of A and forms a lightlike pair with event 
A.

Nature reveals a cause-and-effect structure beyond the vision of Euclidean geome­
try. The causal relation between an event B and another event A falls into one or the

Cause and effect preserved by 
light cone
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E

FIGURE 6-5. Exploded view o f the regions in 
classified w ith  respect to a selected event A.



other of five categories picked out by the light cone of A. That light cone and those 
categories have an existence in spacetime quite apart from any space and time 
measurements that may be used to describe them. Zero interval between events in one 
free-float frame means zero interval between the same events in every overlapping 
free-float frame. The light cone is the light cone is the light cone!

EXERCISE 6-1 RELATIONS BETWEEN EVENTS 1 8 3

Event A appears at the origin of every spacetime map in this chapter. What’s so special 
about event A?

1L Nothing whatever is special about event A! On the contrary, we have not captured 
the full story of the causal structure of spacetime until for every event A {Aj, A2, Aj, 
. . . ) we have classified every event B (Bj, B2, Bj, . . . ) into the appropri­
ate category— timelike! lightlike! spacelike!— with respect to that event.

Figure 6-5 summarizes the relations between a selected event A  and all other events of 
spacetime.

CHAPTER 6 EXERCISES

PRACTICE
6-1 relations between events
This is a continuation of Sample Problem 6-1. Events 
1,2,  and 3 all have the laboratory coordinates y =  
z =  0. Their x- and /-coordinates are plotted on the 
laboratory spacetime diagram.

a Answer the following questions three times: 
once for the timelike pair of events 1 and 2, once for 
the spacelike pair of events 1 and 3, and once for the 
lightlike pair of events 2 and 3.

( 1) What is the proper time (or proper distance) 
between the two events?

(2) Is it possible that one of the events caused the 
other event?

(3) Is it possible to find a rocket frame in which the 
spatial order of the two events is teversed? That 
is, is it possible to find a rocket frame in which 
the event that occurs to the right of the other 
event in the laboratory frame will occur to the 
left of the other event in the rocket frame?

(4) Is it possible to find a rocket frame in which the 
temporal order of the two events is reversed? 
That is, is it possible to find a rocket frame in 
which the event that occurs before the other 
event in the laboratory frame occurs after the 
other event in the rocket frame?

7
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EXERCISE 6-1. Laboratory spacetime map.
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b For the timelike pair of events, find the speed 
and direction of a rocket frame with respect to which 
the two events occurred at the same place. For the 
spacelike pair of events, find the speed and direction 
of a rocket frame with respect to which the two events 
occurred at the same time.

6-2 timelike, lightlike, or 
spacelike?

The first table lists the space and time coordinates of 
three events plus the reference event (event 0) as 
observed in rhe laboratory frame.

LABORATORY COORDINATES OF THREE 
EVENTS

t

(years)
X

(years)
y

(years)

Event 0 0 0 0

Event 1 3 4 0

Event 2 6 5 0

Event 3 8 8 3

a Copy the second table. In the top half of each 
box in the second table, write the nature of the 
interval —  timelike, lightlike, or spacelike —
between the two corresponding events.

b In the bottom half of each box in the second 
table, write ‘ ‘yes” if it is possible that one of the events 
caused the other and “no” if it is not possible.

c Find the speed (with respect to the laboratory 
frame) of a rocket frame in which evenr 1 and event 2 
in the first table occur at the same place.

d Find the speed (with respect to the laboratory 
frame) of a rocket frame moving along the x-axis in 
which event 2 and event 3 in the first table occur at the 
same time.

6-3 proper time and proper 
distance

N ote: This exercise uses the Lorentz transformation 
equations.

a Two events P and Q have a spacelike separa­
tion. Show in general that a rocket frame can be found 
in which the two events occur at the same time. Also 
show that in this rocket frame the distance between 
the two events is equal to the proper distance between 
them. (One method: assume that such a rocket frame 
exists and then use the Lotentz transformation equa­
tions to show that the relative velocity of this rocket 
frame is less than the speed of light, thus justifying the 
assumption made.)

b Two events P and R have a timelike separa­
tion. Show in general that a rocket frame can be found 
in which the two events occur at the same place. Also 
show that in this rocket frame the time between the 
two events is equal to the proper time between them.

PROBLEMS
6-4 autobiography of a photon
A photon emitted by a star on one side of our galaxy is 
absorbed near a star on the other side of our galaxy.

■<j[^[^CERCISE 6-2

INTERVAL BETWEEN EVENTS: TIMELIKE, LIGHTLIKE, OR SPACELIKE?
Event 1 Event 2 Event 3

Event 0

Event 1

Event 2



EXERCISE 6-5 THE DETONATOR PARADOX 1 8 5

100,000 light-years away from its point of origin as 
measured in the frame of the galaxy. How does the 
photon experience its own birth and death? That is to 
say, what are the space and time separations between 
the birth and death of the photon in the frame of the 
photon?

Discussion: We cannot answer this question, be­
cause we cannot move along with the photon. No 
matter how fast the unpowered rocket in which we 
ride, we still measure light to move past us with the 
speed of light! Still, we can try to answer the question 
as a limiting case in the galaxy frame. Think of ex­
tremely energetic PROTONS traveling the same 
path. As protons of greater and greater energy are 
emitted by the first star and are absorbed near the 
second star at the other side of the galaxy, what 
happens to the distance between these two events in 
the frame of the proton? What happens to the time 
between these events in the frame of the proton? 
Come in this way to a limiting case in which the 
PROTON is moving arbitrarily close to the speed of 
light in the galaxy frame. In this limit, what would 
you expect the distance and time to be between birth 
and death in the frame of a PHOTON traveling the 
same path in space?

a You are the photon. Using the above argu­
ment, write the first few sentences of your autobiog­
raphy.

At the end of the trip, near a star at the fringe of our 
galaxy, a galaxy-spanning photon travels 10 kilome­
ters vertically through the atmosphere of a planet 
before it enters a telescope and is absorbed in the eye 
of an astronomer.

The average index o f refraction  of the atmo­
sphere of this planet is « =  1.00030. The speed of 
the photon in such an atmosphere Is v =  v ^ ^ /c  =  
1 /n . (The speed of light in a vacuum is unity.)

b What is the proper time for this last leg of the 
trip —  the time in the rest frame of the “slowed- 
down” photon? How far apart is the top of the atmo­
sphere and the astronomer’s eye in the frame of the 
photon?

C Complete your photon autobiography with an 
additional couple of sentences.

Discussion: Relativity is a classical theory — that 
is, a nonquantum theory — in which photons are 
postulated to move at light speed in a vacuum and at 
a speed v =  l /«  in air, where n is the index of refrac­
tion. Q uan tum  electrodynam ics (QED), the 
quantum theory of interactions between light and 
matter, tells us that it is incorrect to talk of a single 
photon moving through air. Rather, one thinks of an 
initial photon being absorbed by an atom in the air 
and a second photon emitted, the second photon then 
absorbed by another atom, which emits a third pho­
ton, and so forth. The classical relativistic analysis is

not cotrect when viewed ftom the quantum perspec­
tive. Fot more on quantum electrodynamics, read 
Richard P. Feynman, QED: The Strange Theory of 
Light and Matter (Princeton, Ptinceton University 
Press, 1985).

6-5 the detonator paradox
A U-shaped structure made of the strongest steel 
contains a detonator switch connected by wire to one 
metric ton (1000 kilograms) of the explosive TNT, as 
shown in the figure. A T-shaped structure made of 
the same strong steel fits inside the U, with the long 
arm of the T not quite long enough to teach the 
detonator switch when both structures are at rest in 
the laboratory.

Now the T structure is removed far to the left and 
accelerated to high speed. It is Lorentz-contracted 
along its direction of motion. As a tesult, its long arm 
is not long enough to teach the detonatot switch when 
the two collide. Therefote there will be no explosion.

REST FRAME OF T S T R U a U R E
EXERCISE 6-5 . B o th  a t  re st: The leg o f  the T  almost reaches the 
detonator sw itch  when both the T  a n d  the U  are a t  rest. Points A  
a n d  B are used in  p a r t h  o f  the exercise. R e s t  f r a m e  o fX J  s tr u c ­
tu re :  The leg o f  the moving T  is Lorentz contracted in  the rest fram e  
o f  the U. Does th is  mean th a t the explosion w il l  not take place? R e s t  

f r a m e  o f T  s tr u c tu r e :  The legs o f  the moving U  are Lorentz-con- 
trac ted  in  the rest fra m e  o f the T . Does th is  mean explosion w il l  take  
place?
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However, look at the same situation in the rest 
frame of the T structute. In this frame the arm of the 
T has its rest length, while the two arms of the U 
structure are Lorentz-contracted. Therefore the arm of 
the T will certainly strike the detonator switch and 
there will be a terrible explosion.

a Make a decisive prediction: Will there be an 
explosion or not? Your life depends on it!

b The wire from the detonator switch to the 
TNT is restrung through point B on the U structure 
when both structures are at rest, and a laser is installed 
at point A  on the T structure. Later, when the two 
sttuctures collide at A, the laser fires a pulse at B that 
cuts the detonator wire. Does this new apparatus 
change your prediction about detonation of the TNT?

Acknowledgment: A paper desaibing this paradox crossed the desk 
of one of the authors, but the paper and the name of its author have 
been lost. The laser inhibitor device was devised by Gordon Roesler.

6-6 how fast can you walk?
Webster's Eighth says that to “walk” means to “go on 
foot without lifting one foot clear of the ground before 
the other touches the ground.” In other words, at least 
one foot must be on the ground at all times. Use this 
definition to discover the maximum speed of walking 
imposed by relativity.

We assume advanced technology here! A walking 
robot moves its free foot forward at nearly the speed of 
light. Then one might argue (ambiguously) as fol­
lows: While the free foot is moving forward, the 
planted foot is on the ground, ready to be picked up 
when [look out!} the free foot comes down in front. 
Half the time each foot is in motion at nearly light 
speed and half the time it is at rest. Therefore the 
average speed of each foot, equal to the maximum 
possible speed of the walking robot, is half the speed 
of light.

Why is this argument ambiguous? Because of the 
relativity of simultaneity. The word when applied to 
separated events should always unfurl a red flag. The 
event “front foot down” (label FrontDown) and the 
event “rear foot up” (label RearUp) occur at different 
places along the line of motion. Observers in relative 
motion will disagree about whether or not events 
FrontDown and RearUp occur at the same time. 
Therefore they will disagree about whethet or not the 
robot has one foot on the ground at all times in order 
to satisfy the dictionary definition of walking.

How to remove the ambiguity in the definition of 
walking? One way is to make the conventional defini­
tion frame-independent: One foot must be on the 
ground at all times as observed in every free-float frame 
of reference. What limits does this place on the two 
events FrontDown and RearUp? The rear foot must 
leave the ground after, or at least simultaneous with.

the front foot touching the ground, as observed by all 
free-float observers. Use the following outline to de­
rive the consequences of this definition for the maxi­
mum speed of walking.

a  Consider the three possible relationships be­
tween events FrontDown and RearUp: timelike, 
lightlike, and spacelike. For each of these three rela­
tionships, write down answers to the following three 
questions:

(1) Will the temporal order of the two events be 
the same for all observers?

(2) Does this relationship adequately satisfy the 
frame-independent definition of walking?

(3) If so, does this relationship give the maximum 
possible speed for walking?

Show that you answer “yes” to all three questions 
only for a lightlike relationship between the two 
events.

b A lightlike relationship between events Front- 
Down and RearUp means that light can just travel 
from one event to the other with no time left over. Let 
the distance between these events —  the length of one 
step in the Earth frame —  be the unit of distance and 
time. Show that for the limiting speed in this frame, 
each foot spends two units of time moving forward, 
then waits one unit while the light signal propagates 
to the other foot, then waits three units while the other 
foot goes through the same process. Summary: Out of 
six units of time, each foot moves forward at (nearly) 
the speed of light for two units. What is the average 
speed of each foot, and therefore the speed of the 
walker, as measured in the Earth frame?

c Draw a spacetime diagram for the Eatth frame, 
showing worldlines for each of the robot’s feet and 
worldlines for the connecting light flashes. Add a 
worldline showing the averaged motion of the torso, 
always located halfway between the two feet in the 
Earth frame. Demonstrate that this torso moves at the 
speed of the walker reckoned above.

d Paul Horwitz says, “We determined the value 
of a maximum walking speed by finding a frame- 
independent definition of walking. Therefore this 
walking robot moves at the same speed as observed in 
every frame.” Is Paul right?
Reference: George B. Rybicki, American Journal o f Physics, Volume 
59, pages 3 6 8 -3 6 9  (April 1991).

6-7 the flickering bulb 
paradox: a project

Note: The following is too long for a regular exercise, 
but it has many insights worth pursuing as a longer 
activity. Therefore we call it a project.

Two long parallel conducting rails are open at one 
end but connected electrically at the other end
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■ 4 meters ---- 2 meters •

SLIDER FRAME
EXERCISE 6-7 . R a i l  f r a m e :  Configuration a t t  =  0  in  the rest fram e o f  the rails. S lider C D  moves to the 
right w ith  speed v„i such th a t the Lorentz-contraction fa c to r  equals 2 . The vertica l legs o f  the slider are 
conductors; the horizonta l crosspiece is an  insulator. S l i d e r  f r a m e :  Configuration a t  t '  =  0  in  the rest 
fram e o f  the slider. The ra ils a n d  lam p move to the le ft w ith  speed \„ i  such th a t the Lorentz-contraction fa c to r  
is  2.

through a lamp and battery, as shown in the figure 
(rail frame). One of the rails has a square vertical 
offset 2 meters long. Between the rails moves (with­
out friction) an H-shaped slider, whose vertical legs 
are conductors but whose horizontal crosspiece is an 
insulator. (Assume that the vertical legs are not per­
fect conductors so that, with a sufficiently powerful 
battery, a voltage is maintained between the rails even 
when they are connected by the vertical legs of the 
slider.) If either vertical leg of the slider connects the 
two rails, the electrical circuit is completed, permit­
ting the lamp to light.

The rest (proper) length of the slider is also 2 
meters, but it moves at such a speed that its Lorentz- 
contracted length is 1 meter in the rail frame. Hence 
in the rail frame there is a lapse of time during which 
neither leg of the slider is in contaa with the upper 
rail. Since the circuit is open during this period, the 
bulb should switch off for a time and then on again 
—  it should flicker.

The figure (slider frame) shows the configuration 
at / '  =  0 in the slider frame. In this frame the slider is 
at rest, its length is equal to its rest length, 2 meters, 
while the rails, the lamp, and the battery all move to 
the left with a speed such that their lengths along the 
direction of motion are reduced by a factor of 2. In

particular the offset in the upper rail is Lorentz- 
contracted to a length of one meter. Therefore, in the 
slider frame, one or the other of the slider conductors 
always spans the rails, so the circuit is never broken 
and the bulb should never switch off— it should 
NOT flicker!

Those trying to disprove relativity shout, “Para­
dox! In the rest frame of the rails the lamp switches off 
and then on again —  it flickers. In contrast, in the rest 
frame of the slider the lamp stays on — it does not 
flicker. Yet all observers must agree: The lamp either 
flickers or it does not flicker. Relativity must be 
wrong!”

Analyze the system in sufficient detail either to 
demonstrate conclusively the correctness of this objec­
tion or to pinpoint its error.
Reference: G. P. Sastry, American Journal o f Physics, Volume 55, 
pages 9 4 3 -9 4 6  (October 1987).

6-8 the contracting spaceship 
paradox: a project

Note: The following is too long for a regular exercise, 
but it has many insights worth pursuing as a longer 
activity. Therefore we call it a project.

Kerwin Warnick writes in with the following par-
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adox. A spaceship of proper length L„ accelerates 
from rest. Its front end travels a distance Xp in time tp 
to a final speed at which the ship is contracted to half 
its rest length. In the same time tp  the rear end moves 
the same distance Xp as the front end plus the distance 
L„/2 by which the ship has contracted. Distance 
traveled by the rear end Xp -b (L„/2) in time means 
an average speed {xp -f  fLo/2)}//p. Since the proper

length L„ can be arbitrarily large, this average speed 
can be arbitrarily great, even greater than the speed of 
light. “This disproves relativity!” he exclaims.

Analyze this thought experiment in sufficient de­
tail either to demonstrate conclusively the correctness 
of Warnick’s objection or to pinpoint its error.
Reference: Edwin F. Taylor and A. P. French, American Journal of 
Physics, Volume 51, pages 889-893 (Ocrober 1983).



7.1 M O M EN ER G Y :T O lA t CONSERVED 
IN A  COLLISION

momentum conserved, 
energy conserved. 
momenergy conserved!

Paradoxically, few examples of motion are more complicated than a collision, and few 
are simpler. The complication shows nowhere more clearly than in the slow-motion 
videotape of the smashup of two automobiles. Millisecond by millisecond the fendet 
of one colliding car deforms another fraction of a centimeter. Millisecond by millisec­
ond the radiator grille of the other car bends inward a little more on the way to total 
collapse: steel against steel, force against force, crumpling surface against crumpling 
surface. What could be more complex?

For the drivers of the colliding cars the experience is shattering. They are hardly 
aware of noise and complicated damage. A single impression overpowers their senses: 
the inevitability of the crash. Call it what we will —  inertia, momentum, the grip of 
spacetime on mass— something is at work that drives the two vehicles together as the 
frantic drivers jam their brake pedals down, locking the wheels as the cars slither over 
the glassy ice, crash into one another, then slide apart.

Does mass lose its inettia during the collision? No. Inertia does its best to keep each 
car going as it was, to keep its m om en tum  constant in magnitude and direction. 
Momentum: we can think of it loosely as an object’s will to hold its course, to resist 
deflection from its appointed way. The higher the object’s momentum, the more 
violently it hits whatever stands in its way. But the momentum of a single object is not 
all-powerful. The two vehicles exchange momentum. But spacetime insists and 
demands that whatever momentum one car gains the other car must lose. Regardless 
of all complications of detail and regardless of how much the momentum of any one

189

Smashup complicated?

Smashup is simplel

Momentum conservation simplifies 
description
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Energy too is conserved

Mom energy  is conserved!

object may change, the combined momentum of the two objects remains constant: the 
total is unchanged in the collision. A like statement applies to energy, despite a 
conversion of energy of motion into heat energy and fender crumpling.

A collision thus manifests a wonderful simplicity: the combination of the motion- 
descriptive quantities (momentum and energy) of the two colliding bodies does not 
change. That combination is identical before and after the collision. In a word, it is 
conserved. This conserved combination we call m om en tum  -  energy or, more 
briefly, m om energy (defined more carefully in Section 7.2). We will use the two 
terms interchangeably in this book.

A collision cannot be elevated from mere talk to numbers without adopting, 
directly or indirectly, the principle of conservation of momentum and energy. In the 
enterprise of identifying the right numbers, using them, and understanding them, no 
concept is more powerful than what relativity smilingly holds forth: momenergy.

Wait a minute. Apparently you are going to find new expressions for momentum and 
energy, then combine them in some way to form a unity: momenergy. But I have three 
complaints. (1) What is wrong with what good old-fashioned secondary school physics 
textbooks give us, the Newtonian expressions for momentum— psmftm ~  
kinetic energy = V2mv̂ „„,— where v̂ „„, is expressed in conventional units, say
meters/second? (2) Momentum and energy do not even have the same units, as these 
formulas make clear. How can you combine quantities with different units? (3) 
Momentum and energy are different things entirely; why try to combine them at all?

Take your questions in order.

1. N ew tonian  Expressions: Only for slow-moving particles do we get correct 
results when we use Newtonian expressions for momenrum and energy. For 
particle speeds approaching that of light, however, total energy and momentum 
of an isolated system, as Newton defined momentum and energy, are not 
conserved in a collision. In contrast, when momentum and energy are defined 
relativistically, then total momentum and total energy of particles in an isolated 
system are conserved, no matter what their observed speeds.

2. U nits: It is easy to adopt identical units for momentum and energy. As a start we
adopt identical units for space and time. Then the speed of a particle is expressed 
in unit-free form, v, in meters of distance per meter of light-travel time (Section 
2.8). This choice of units, which we have already accepted earlier in this book, 
gives even Newtonian expressions for momentum —  /'Newton ~  kinetic
energy— f̂ Newton ~  Vtmv^ —  the same unit: mass. These are not relativistic 
expressions, but they do agree in their units, and agree in units with the correct 
relativistic expressions.

3. M om entum  an d  Energy D ifferent: Yes, of course, momentum and energy 
are different. Space and time are different too, but their combination, spacetime, 
provides a powerful unification of physics. Space and time are put on an equal 
footing, but their separate identities are maintained. Same for momenergy: We 
will see that its “space part” is momentum, its “ time part” energy. We will also 
discover that its magnitude is the mass of the particle, teckoned using the good 
of, ever-lovin’, familiar minus sign: m^ =  B3 — f f .

Thus relativity offets us a wonderful unity. Instead of three separate motion-de­
scriptive quantities —  momentum, energy, and mass —  we have a single quantity: 
momenergy.
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7.2  MOMENERGY ARROW
a spacetime arrow pointing along the worldline

What lies behind the name momentum-energy {momenergy}? What counts are its 
properties. We most easily uncover three central properties of momenergy by combin­
ing everyday observation with momenergy’s essential feature; Total momenergy is 
conserved in any collision.

First, think of two pebbles of different sizes moving with the same velocity toward 
the windshield of a speeding car. One bounces off the windshield without anyone 
noticing; the other startles the occupants and leaves a scratch. Five times the mass? Five 
times the punch-delivering capacity! Five times the momenergy. Momenergy, in other 
words, is proportional to mass.

Second, momentum-energy of a particle depends on its direction of travel. A pebble 
coming from the front takes a bigger chip out of the windshield than a pebble of equal 
mass and identical speed glancing off the windshield from the side. Therefore mo­
menergy is not measurable by a mere number. It is a directed quantity. Like an arrow 
of a certain length, it has magnitude and direction.

Our experience with the unity of spacetime leads us to expect that the momenergy 
arrow will have three parts, cotresponding to three space dimensions, plus a fourth 
part corresponding to time. In what follows we find that momenergy is indeed a 
four-dimensional arrow in spacetime, the m om energy 4-vector (Box 7-1). Its three 
“space parts” represent the momentum of the object in the three chosen space 
directions. Its “time part” represents energy. The unity of momentum and energy 
springs from the unity of space and time.

In what direction does the momenergy 4-vector of a particle point? It points in the 
“same direction in spacetime” as the worldline of the particle itself (Figure 7-1). There 
is no other natural direction in which it can point! Spacetime itself has no structure that 
indicates or favors one direction rather than another. Only the motion of the particle 
itself gives a prefetred direction in spacetime. The particle moves from one event to a 
nearby event along its worldline. In so doing, it undergoes a spacetim e displace­
m ent, small changes in the three space positions along with an accompanying small 
advance in the time. The spacetime displacement has four parts: it is a 4-vector. The 
momenergy arrow points in the direction of another arrow, the arrow of the particle’s 
spacetime 4-vector displacement. Momenergy runs parallel to worldline!

Compare the worldline of an individual particle in spacetime with a single straw in a 
great barn filled with hay. This particular straw has a direction, an existence, and a 
meaning independent of any measuring method imagined by humans who stack the 
hay or by mice that live in it. Similarly, in the rich trelliswork of worldlines that course 
through spacetime, the arrowlike momenergy of the particle has an existence and 
definiteness independent of the choice— or even use— of any free-float frame of 
reference (Section 5.9).

No frame of reference? Then no clock available to time motion from here to there! 
Or rather no clock except one that the particle itself carries, its own wristwatch that 
records proper time. Proper time for what? Proper time for spacetime displacement 
between two adjacent events on the worldline of the particle. Proper time provides the 
only natural way to clock the rate of motion of the particle; that is the third and final 
feature of momenergy.

In brief, the momenetgy of a particle is a 4-vector; Its magnitude is proportional to 
its mass, it points in the direction of the particle’s spacetime displacement, and it is 
reckoned using the proper time for that displacement. How are these properties 
combined to form momenergy? Simple! Use the recipe for Newtonian momentum: 
mass times displacement divided by time lapse for that displacement. Instead of

Momenergy of particle 
proportional to its moss

Momenergy a directed quantity

Momenergy a 4-vector

Particle momenergy points along 
its worldline

Momenergy independent of 
reference frame

Particle wristwatch logs time for 
momenergy
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WHAT IS A 4-VECTOR?
A vector is a mathematical object that has both m a g nitu d e  and direction . The 
meanings of the terms m a g nitu d e  and direction , however, differ between one 
geometry and another. Mathematics offers many geometries. The two ge­
ometries important to us in this book are Euclidean geometry and 
Lorentz geometry.

Euclidean geometry defines 3-vectors located in 3-dimensional space. Let 
a  speeding particle emit two sparks. The particle's spatial displacement 
from first spark to second spark is a 3-vector. Each of the three compo­
nents (northward, eastward, and upward) of this 3-vector displacement 
has a value larger or smaller, depending on the orientation of the coordi­
nate system chosen. In contrast, the magnitude of the displacement —  the 
distance traveled (computed as the square root of the sum of the squares of 
the three components of displacement) —  has the same value in all coordi­
nate systems.

Lorentz geometry defines 4-vectors located in 4-dimensional spacetime. 
Construct the 4-vector spacetime displacement from the three space com­
ponents supplemented by the time component, the time between sparks 
emitted by the speeding particle. Each of these four components (including 
time) has a value larger or smaller, depending on the choice of free-fioat 
frame of reference from which it is measured. The square of the separation 
in time between the two sparks as so measured, diminished by the square 
of the separation in space in the chosen frame, yields the square of the 
spacetime interval between the two events. This interval has the same 
value in all free-fioat frames. It is also the proper time, the time between the 
two sparks read directly on the particle's wristwatch.

Newtonian mechanics combines (in various ways) time and mass of the 
particle with Euclidean 3-vector displacement of the particle to yield addi­
tional 3-vectors that describe particle motion; velocity, momentum, acceler­
ation. Each 3-vector has magnitude and direction. The values of the three 
components of each 3-vector depend on the orientation of the chosen coor­
dinate system. But for each 3-vector quantity, the 3-vector itself is the same, 
both in magnitude and direction in space, no matter what Euclidean coordi­
nate system we choose. Every 3-vector exists even in the absence of any 
coordinate system at all! That is why the analysis of Newtonian mechanics 
can proceed in all its everyday applications independent of choice of coor­
dinate system.

Relativistic mechanics combines (in various ways) proper time and mass of 
the particle with Lorentz 4-vector displacement of the particle to yield addi­
tional 4-vectors that describe particle motion. Central among these is the 
particle's momentum-energy 4-vector, or momenergy. Values of the four 
components of the momenergy 4-vector differ as measured in different free- 
fioat frames in relative motion. But the momenergy 4-vector itself is the same, 
both in magnitude (mass!) and direction in spacetime, no matter what the 
frame. The momenergy 4-vector of a particle exists even in the absence of 
any reference frame at all! That is why the analysis of relativistic mechanics 
can proceed in all its power independent of choice of free-fioat frame of 
reference.
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FIGURE 7-1 . M o tio n  a n d  m o m e n e rg y  seen  a s  id e n t ic a l ly  d i r e c te d  a r r o w s . The momenergy arrow is 
carried along the worldline w ith  the particle. Under action o f  a  force, the particle traces out a  curved  
worldline. The momenergy arrow  —  its  constant m agnitude equa l to the mass o f  the p a rtic le— continually  
alters i ts  t i l t  to po in t in  the same direction in  spacetime as the worldline. (For the special case shown here, the 
particle moves in  x a n d  t, bu t not in  y or z.)

Newtonian displacement in space, use Einstein’s displacement in spacetime; instead of 
Newton’s “universal time,’’ use Einstein’s proper time.

The result expresses the momenergy 4-vector in terms of the spacetime displace­
ment 4-vector:

(m om energy) — (mass) X
(spacetim e displacem ent)

(proper time for that displacement)
(7 -1 )

In any given free-float frame, the momentum of the particle is the three “space parts’’ 
of the momenergy and the particle’s energy is the “time part.’’ This expression for 
momenergy is simple, and it works —  works as employed in the law of conservation of 
momenergy; Total momenergy before reaction equals total momenergy after reaction. 
Investigators have observed and analyzed more than a million collisions, creations, 
transformations, decays, and annihilations of particles and radiation. They have failed 
to discover a single violation of the relativistic law of conservation of momenergy.

To arrive at a formula as important as (7-1) so painlessly may at first sight create 
doubts. These doubts have to be dismissed. Fact is, there is no room for any 
alternative —  as we see by going step by step through the factors in this equation.

Particle momenergy
Magnitude: Mass 
Direction: Along spacetime 
displacement

Statem ent 1: m  un its o f mass pu rsu ing  a given m otion  carry m  tim es the 
m om energy o f one u n it o f mass. Reasoning: m identical objects racing along side 
by side carry m times the momentum and m times the energy— and therefore m times 
the momenergy— of an object of unit mass.

S tatem ent 2: M om energy poin ts in the same d irection  in spacetim e as 
w orldline. Reasoning: Where else can it point? Even the slightest difference in
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direction between momenergy and direction of motion along the worldline would bear 
witness to some crazy asymmetry in spacetime, for which no experiment in field-free 
space has ever given the slightest evidence.

Momenergy formula justified

Statem ent 3: T he spacetim e displacem ent betw een one event on the 
w orld line and a nearby event on it specifies the d irection  o f th a t w orld ­
line. Reasoning: The very concept of direction implies that there exists a segment, AB, 
of the worldline short enough to be considered straight. And to fix the direction of this 
spacetime displacement AB, it suffices to know the location of any two events, A  and 
B, on this short segment.

S tatem ent 4: W orld line  d irection  — and  therefo re  m om energy — is inde­
p en d en t o f the m agnitude o f the spacetim e displacem ent. Reasoning: To 
pick an event B' on the worldline half as far from A as B along the short straight 
segment — thus to cut in half the spacetime displacement — makes no change in the 
direction of the worldline, therefore no change in the direction of the momenergy, 
therefore no change in the momenergy itself

Unit of momenergy: mass

Statem ent 5: T he u n it 4-vector (spacetim e d isp lacem en t)/(p ro p er tim e for 
tha t displacem ent) defines and m easures the d irection  o f the  w orld line 
displacem ent and therefore the d irection  o f the  m om energy 4-vector.
Reasoning: What matters is not spacetime displacement individually, not proper time 
individually, but only their ratio. This ratio is the only directed quantity available to us 
to describe the rate of motion of the particle through spacetime.

The spacetime displacement, AB, has a magnitude equal to the interval (or proper 
time or wrisrwatch time) the particle requires to pass from A to B. That is why the 
ratio in question is a unit 4-vector.

Proper time provides the only natural way, the only frame-independent means, to 
clock the particle. If instead we should incorrectly put frame time into the 
denominator— frame time measured by the array of clocks in a particular free-float 
frame— the value of this time would differ from one frame to another. Divided into 
the spacetime displacement, it would typically not yield a unit vector. The vector’s 
magnitude would differ from one frame to another. Therefore we must use in the 
denominator the proper time to go from A to B, a proper time identical to the 
magnitude of the spacetime displacement AB in the numeratot.

Statem ent 6: T he m om energy 4-vector o f the partic le  is

(m om energy) =  (mass) X
(spacetim e displacem ent) 

(proper time for that displacement)
(7 -1 )

Reasoning: There is no other frame-independent way to construct a 4-vector that lies 
along the worldline and has magnitude equal to the mass.

Units: In this book, as in more and more present-day writing, space and time 
appear in the same unit: meter. Numerator and denominator on the right side of 
equation (7-1) have the unit of meter. Therefore their quotient is unit-free. As a result, 
the right side of the equation has the same unit as the first factor: mass. So the left side, 
the momenergy arrow, must also have the unit of mass. As the oneness of spacetime is 
emphasized by measuring space and time in the same unit, so the oneness of momen­
ergy is clarified by measuring momentum and energy in the same unit: mass. Table
7-1 at the end of the chapter compares expressions for momentum and energy in units 
of mass with expressions in conventional units.
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(spacetim e d isp lacem ent)
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(m om energy) — (mass) X
(proper time for that displacement)

/ thought th at “spacetime displacement’’ was the interval, which is the proper time. I 
know, however, th at I am wrong, because i f  spacetime displacement and proper time 
were the same, then the numerator a n d  denominator of the fraction would cancel, and 
momenergy would simply equal mass. Surely you would have told us of such simplicity. 
W hat have I missed?

— It is easy to confuse a vector— or a 4-vector— with its magnimde.
'* In the expression for momenergy, the spacetime displacement is a 4-vector (Box 

7-1). In the laboratory frame this displacement 4-vector has four components, [d t, 
dx, dy, d z). In a free-float rocket moving in an arbitrary direction, the displacement 
4-vector has four components, {dt', d x ', d y ', dz'}, typically different, respectively, 
from those in the laboratory frame.

A vector in space (a 3-vector) has not only a magnitude but also a direction 
independent of any coordinate system. (“Which way did they go?’’ “That-a-way!’’ 
— pointing.) Similarly, the spacetime displacement has a magnitude and direction 
in spacetime independent of any reference frame. This spacetim e d irec tion  
distinguishes the 4-vector displacement (the numerator above) from its magnitude, 
which is the proper time for that displacement (the denominator). This proper time 
(interval) can be observed directly: it is the time lapse read off the wristwatch carried 
by the particle while it undergoes the spacetime displacement.

In summary the fraction

(spacetim e d isplacem ent)

(proper time for that displacement)

has a numerator that is a 4-vector. This 4-vector numerator has the same magnitude 
as the denominator. The resulting fraction is therefore a unit 4-vector pom tm g along 
the worldline of the particle. This unit 4-vector determines the direction of the 
particle’s momenergy in spacetime. And the magnitude of the momenergy? It is the 
mass of the particle, the first term on the right of the expression at the top of this 
page. In brief, the momenergy of a particle is 4-vector of magnitude m pointing 
along its worldline in spacetime. This description is independent of reference frame.

Unit 4-vector along worldline

7.3  MOMENERGY COMPONENTS AND 
MAGNITUDE

space part: itiomentum of the object 
time part: energy of the object 
magnitude: mass of the object

Accidents o f history have given us not one word, momenergy, b u t two words, 
m om entum  and energy, to describe mass in motion. Before Einstein, mass and m otion 
were described not in the unified context o f spacetime b u t in terms o f space and time 
separately, as tha t division shows itself in some chosen free-float frame. O ften we still 
think in those separated terms. B ut the single concept spacetim e location o f an event 
unites the earlier two ideas o f its position in space and the tim e of its happening. In the

Break down momenergy for 
examination
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FIGURE 7-2. Momenergy arrow o f a mov­
ing object translated into the language of 
momentum and energy, shown for the spe­
cial case in which upward momentum 
{vertical momentum) equals zero. The mo­
menergy arrow itself has an existence and direc­
tion (in that great haystack of worldlines and 
events that we call spacetime) independent of the 
choice, or even presence, of any free-float frame. 
In contrast, separate measures of momentum and 
energy do depend on choice of frame. They point 
parallel to, that is in the same direction as, the 
corresponding space and time directions of the 
chosen frame itself. See Figures 7-3 and 7-4 for 
a still more revealing representation of the pro­
portion between momenergy and its components.

Momenergy components of 
particle in a  given frame

same way we combine momentum and energy of a moving object into the single idea 
of momenergy arrow. Having assembled it, we now break momenergy down again, 
seeking new insight by examining its separate parts.

The unity of momenergy dissolves— in our thinking— into the separateness of 
momentum and energy when we choose a free-float frame, say the laboratory. In rhat 
laboratory frame the spacetime separation between two nearby events on the worldline 
of a particle resolves itself into four different separations: one in laboratory time and 
one in each of three perpendicular space directions, such as north, east, and upward. 
Wirh each spacetime separation goes a separate part, a separate portion, a separate 
com ponen t of momenergy in the laboratory free-float frame (Figure 7-2).

The “space parts” of momenergy of a particle are its three components of momen­
tum relative to a chosen frame. Their general form is not strange to us— mass times a 
velocity component. The “ time part,” however, is new to us, foreshadowing impor­
tant insights into the nature of energy (Section 7.5). The four components are

/  eastward \  
component 1 

of I 
\  momenergy/ \  momentum/

/  eastward \  
component j _  

of

=  (mass) X
(eastward displacement) 

(proper time for that displacement)

( northward \  /  northward \
component I _  component 1 

of of

momenergy/ (m om entum /
=  (mass) X

(northward displacement) 
(proper time for that displacement)

 ̂ upward ^
component

of
=

(momenergy/

=  (

/  time ^
component

of =  (

\  momenergy /

(  upward \  
component I 

of
(m om entum /

=  (energy) =  (mass) X

(upward displacement)
(proper time for that displacement)

(time displacement)
(proper time for that displacement)

The calculus version of these equations is deliciously brief. Here, as in Section 6.2, tau 
(T )  stands for proper time:

dt
E — m —

dx

dx
p - m - (7-21

py =  m —

p , ^ m

dy

dx

dz

dx



The components of the momenetgy 4-vectot we now have before us in simple form, 
but how much is the absolutely-number-one measure of this physical quantity, its 
magnitude? This magnitude we reckon as we figure the magnitude of any Lorentz 
4-vector: magnitude squared is the difference of squares of the time part and the space 
part:

(magnitude of momenetgy arrow)^
=  (energy)^ — (east momentum)^ — (north momentum)^ — (up momentum)^
=  £2 -  (/-J2 _

{dt)  ̂— (dxY — {dyY ~  {dzY {dxY---------------------------------  =  ^2------  =
kdxY KdxY
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- m‘- m‘-

In brief, the magnitude of the momenetgy 4-vector, or its square, 

(magnitude of momenetgy arrow)^ =  =  nY (7-3)

is identical with the particle mass, or its square. Moreover, this mass is a quantity 
characteristic of the particle and totally independent of its state of motion.

It’s worthwhile to translate this story into operational language. Begin with a 
particle that is at rest. Its 4-vector of energy and momentum points in the pure 
timelike direction, all energy, no momentum. Let an accelerator boost that particle. 
The particle acquires momentum. The space component of the 4-vector, originally 
zero, grows to a greater and greater value. In other words, the momenetgy 4-vector 
tilts more and more from the “vertical,” that is, from a purely timelike direction. 
However, its magnitude remains totally unchanged, at the fixed value m. In conse-

Magnitude of momenergy 
4-vector: mass!

S A MP L E  P R O B L E M  7-1 .
MASS
The energy and momentum components of a particle, measured in the laboratory, are

£ =  6.25 kilograms 
p^ =  1.25 kilograms 
py =  p^ =  2.50 kilograms

What is the value of its mass?

SOLUTION
We obtain a value for mass using equation (7-3):

=  ipY)^ -  {PyY -  (/>.)'
=  [(6.25)2 -  (1.25)2 -  (2.50)2 -  (2.50)2] (kilograms)2 
=  [39.06 — 1.56 — 6.25 ~  6.25} (kilograms)2 
=  [39.06 — 14.06} (kilograms)2 
=  25.00 (kilograms)2

Hence

w =  5.0 kilograms
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E = 
52

\ 2 0mass

p = - 4 8

E = f ^ 2 0
25 L ^ m a s s

-15

20
mass

20m a s s j^  25 

p =  15

energy

p = 48

20
mass

X-momentum

FIGURE 7-3. Different views o f one a n d  
the same momenergy 4-vector o f a  particle 
in seven different free-float fram es. The y-
and z-components of momentum are assumed to 
equal zero, and frames are chosen to give integer 
values for energy and x-momentum components. 
The mass of the particle equals 2 0  units as 
reckoned in every free-float frame: —
p .̂ This invariant value of the mass is shown by 
the thick “handle" on each vector. For a  frame 
in which the particle is at rest (center diagram), 
the energy is equal to the mass and the handle 
covers the vector.

Does the momenergy 4-vector for this particle 
require for its existence any reference frame? No 
one would laugh more at such a misapprehension 
than the particle! The momenergy 4-vector has 
an existence in spacetime independent of any 
clocks and measuring rods. We, however, wish to 
assign to this 4-vector an energy and momentum. 
For that purpose we do require one or another 

free-float frame.

quence, the time component of that 4-vector, that is, the energy of the particle, 
undergoes a systematic alteration.

If the geometry of spacetime were Euclidean, this ever-growing tilt, this continuing 
rotation of the direction of the arrow of momenergy, would cause the vertical or time 
component to become ever shorter. However, spacetime is not Euclidean. It is Lo- 
rentzian, as appears in the minus sign in the equation for momenergy magnirude m: 
m  ̂— E^—p^. With momenergy magnitude, or particle mass m, being constant, and 
momentum p  ever growing, Lorentz geomerry itself tells us that the ever-growing tilt, 
the ever-larger momentum value, p, causes the time component of the momenergy 
— rhe energy E— not to shorten, as in a Euclidean spacetime, but to lengthen as the 
acceleration proceeds:

E =  +  p^y^^ =  an increasing function of momentum, p

This marvelously simple relation between energy and momentum, full of geometric as 
well as physical content, has by now been tried and verified in so many thousands of 
experiments of such varied kinds that it counts today as battle-tested.

Energy, momentum, and mass, expressed so far in the language of algebra, let 
themselves be displayed even more clearly in the language of pictures. Only one 
obstacle stands in the way. The paper is Euclidean and the vertical leg of a right 
triangle typically is shorter than the hypotenuse. In contrast, spacetime is Lorentzian, 
and the timelike dimension (the energy) is typically longer than the “hypotenuse’ ’ (the 
mass). We are indebted to our colleague William A. Shurcliff for a way to have our 
cake and eat it too, a device to employ Euclidean paper and yet display Lorentzian 
length. How? By laying over the hypotenuse of the Euclidean triangle a fat line or 
handle of length adjusted to the appropriate Lorentzian magnitude (Figure 7-3). The 
length of the handle represents the invariant value of the particle mass. This length 
remains the same, whatever the values of energy and momentum, values that differ as 
the particle is observed from one or another frame of reference in relative motion.

Figure 7-3 shows a few of the infinitely many different values of energy and 
momentum that one and the same particle can have as measured in different free-float 
frames. Each arrow, being depicted on a Euclidean sheet of paper, necessarily appears 
with an apparent length that increases with slope or particle speed. The handle on the 
arrow, by contrast, has the length appropriate to Lorentz geometry. This length 
represents particle mass, m =  20, a quantity independent of particle speed. The 
momenergy 4-vector of a material particle is always timelike. Why timelike? Because 
the momenergy 4-vector lies in the same spacetime direction as the worldline of the 
particle (Section 7-2). The events along the worldline have a timelike relationship; 
Time displacement between events is greater than the space displacement. One

energy
(single particle: values from 
several frames superposed)

FIGURE 7-4. Momenergy 4-vector 
fo r the single particle o f Figure 
7-3 as observed in seven free-float 

fram es, these plots then super­
posed on a  composite momenergy 
diagram . Frames are chosen so that 
y- and z-components of momentum 
equal zero. Locus of the tips of the 
arrows traces out a hyperbola. The 
central short vertical arrow pointing to 
the dot labeled m represents momenergy 
as measured in the particle rest frame. 
In thisframe momentum has value zero 
and energy— “rest energy”— equals 
the mass of the particle. For clarity, the 
handles have been omitted from the 4- 
vectors, which all have identical in­
variant magnitude m =  20 ,
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consequence is that the particle moves at less than the speed of light in every possible 
free-floar frame.

The equation E?-— p^ =  m  ̂=  (constant) is the formula for a hyperbola. Figure 7-4 
generates this hyperbola by superposing on the same figure spacetime vectors that 
represent energy and momenrum of the same particle in different free-float frames. 
For visual clarity the handles are omitred from these 4-vectors. Flowever, each 
momenergy 4-vector has the same magnitude, equal to the particle mass, m — 20.

7.4  M OM ENTUM : "SPACE PART" OF 
MOMENERGY

simply use proper time instead of Newton's 
so-called "universal" time

E, p, m of particle in 
different frames related by 
hyperbola

Newton called momentum "quantity of motion.” The expressions for momentum 
that spacetime physics gives us, the last three equations in (7-2), seem at first sight to 
distinguish themselves by a trivial difference from rhe expressions for momentum 
given to us long ago by Newton’s followers:

r X Newton
_ i/x _

^  » P y  Newton ^
dy
dt

dz
I —
dt

[valid for low velocity)

That difference? Today, proper rime dT between nearby events on the worldline of the 
particle. Laboratory time, in older days, when the concepts of proper time and interval 
were unknown. The percentage difference between the two, trivial or even negligible 
under everyday circumstances, becomes enormous when the speed of the object 
approaches the speed of light.

We explore most simply the difference between relativistic and Newtonian predic­
tions of momentum by analyzing a particle that travels with speed in the x-direction 
only. Then the relation between displacement of this particle and its speed is x =  vt. 
For small displacements, for example between two nearby spark events on the 
worldline, this becomes, in the mathematical limit of interest in calculus notation, dx 
=  vdt.

The proper time between the two nearby sparks is always less rhan rhe laboratory 
time:

Newtonian versus relativistic 
expressions for momentum

dT =  [(^t )2 } ‘/2  =  [{dty -  (dxyy/^ =  [{dty -  (pdtyy/^ 
dt

y
=  {dt)(i — (7 -4 )

where gamma, y =  1/(1 ~  is the time stretch factor (Section 5.8). This figure 
for the interval, or proper time, between the two nearby sparks we now substitute into 
equations (7-2) in order to learn how the relativistic expressions for energy and 
momentum depend on particle speed:

dt m
E =  m—  = ---------------

dx (1 —
my

(7 -5 )

dx m {dx/dt) mv^
dx ( 1 -  *̂ 2)1/2 -  mv;y
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Low speed: Newton and Einstein 
agree on value of momentum

High speed: Relativity reveals 
much larger momentum

The momentum expression is the same as for Newtonian mechanics —  mass m 
times velocity (dx/dt) —  except for the factor — in the denominator. That 
factor we can call 1 when the speed is small. For example, a commercial airliner moves 
through the air at approximately one millionth of the speed of light. Then the factor (1 
— differs from unity by only five parts in 10* .̂ Even for an alpha particle
(helium nucleus) ejected from a radioactive nucleus with approximately 5 percent of 
the speed of light, the correction to the Newtonian figure for momentum is only a little 
more than one part in a thousand. Thus for low speeds the momentum expressed in 
equation (7-5) reduces to the Newtonian version.

At a speed close to that of light, however, the particle acquires a momentum 
enormous compared with the Newtonian prediction. The unusually energetic cosmic- 
ray protons mentioned at the end of Section 5.8 crossed the Milky Way in 30 seconds 
of their own time, but a thousand centuries or 3 X 10*  ̂seconds of Earth time. The 
ratio dt/dx  between Earth time and proper rime is thus 10". That is also the ratio 
between the correct relativistic value of the protons’ momentum and the Newtonian 
prediction.

Units: Both Newtonian and relativistic expressions for momentum contain speed, 
a ratio of distance to time. From the beginning we have measured distance and time in 
the same unit, for example meter. Therefore the ratio of distance to time is unit-free. In 
Secrion 2.8, we expressed speed as a dimensionless quantity, the fraction of light 
speed:

Unit of momentum: mass

V — ■
(meters of distance covered by particle) 

(meters of time required to cover that distance) 

(patticle speed in meters/second) _
(speed of light in meters/second) c

(7-6)

In terms of speed v (called beta, fi, by some authors), Newtonian and relativistic 
expressions for rhe magnitude of the momentum have the forms

/'Newton -
p — m v/{\ —

[valid for low speed] (7-7) 
[good at any speed] (7-8)

M ore Units: In otder to convert momentum in units of mass to momentum in 
conventional units, such as kilogram meters/second, multiply expressions (7-6), 
(7-7), and (7-8) by the speed of light c and use the subscript “conv” for “conven­
tional” :

Conversion to conventional 
momentum units

/'conv Newton 

/'conv

'■ /'Newton c — m v c -  m (v,^Jc) c — mv^
mvc__________ '^(Nonv/^)^

H - ^ 2 y / 2  [1 - (^ ^ _ /^ )2 ] l /2

a  -  (Nonv/^)^}'/^

[low speed] (7-9)

[any speed] (7-10)

Thus conversion from momentum in units of mass to momentum in conventional 
units is always accomplished by multiplying by the conversion factor c. This is true 
whether rhe expression for momentum being converted is Newtonian or relativistic. 
Table 7-1 at the end of the chapter summarizes these comparisons.
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7.5 ENERGY: "TIM E PART" OF 
MOMENERGY

energy has two parts: rest energy (= mass) 
plus kinetic energy

What about the ‘‘time part” of the momentum-energy of a particle —  the part we 
have called its energy? This is certainly a strange-looking beast! As measured in a 
particular free-float frame, say the laboratory, this time component as given in 
equation (7-5) is

dt m
E =  m—  — ---------TTrr ~  m jdx

(7-11) Relativistic expression for energy

Compare this with the Newtonian expression for kinetic energy, using K as the symbol 
for kinetic energy:

1
^Newton ~ [valid for low speed) (7-12)

How does the relativistic expression for energy, equation (7-11), compare with the 
Newtonian expression for kinetic energy (7-12)? To answer this question, first look at 
the behavior of these two expressions when particle speed equals zero. The Newtonian 
kinetic enetgy goes to zero. In contrast, at zero speed 1/(1 — =  1 and the
relativistic value for energy becomes equal to mass of the particle.

E ^  =  m (7-13) Rest energy of o particle 
equals its mass

where E ^  is called rest energy o f the  partic le . Rest energy of a particle is simply its 
mass. So the relativistic expression for energy does not go to zero at zero speed, while 
the Newtonian expression for kinetic energy does go to zero.

Is this an irreconcilable difference? The Newtonian formula does not contain an 
expression for rest energy, equal to the mass of the particle. But here is the distinction: 
The telativistic expression gives the value for total energy of the particle, while the 
Newtonian expression describes kinetic energy only (valid for low speed). However, in 
Newtonian mechanics any constant potential energy whatever can be added to the 
energy of a particle without changing the laws that describe its motion. One may think 
of the zero-speed limit of the relativistic expression for energy as providing this 
previously undetermined constant.

When we refer to energy of a particle we ordinarily mean total energy of the particle. 
As measured in a frame in which the particle is at rest, this total energy equals rest 
energy, the mass of the particle. As measured from frames in which the particle moves, 
total energy includes not only rest energy but also kinetic energy.

This leads us to define kinetic energy of a particle as energy above and beyond its 
rest energy:

(energy) =  (rest energy) -f (kinetic energy) Kinetic energy defined

or

E = m ^ K (7-14)
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S A MP L E  P R O B L E M  7-2
MOTION IN THE X -D IR ECT IO N
An object of mass 3 kilograms moves 8 meters What value of kinetic energy would Newton pre-
along the x-direction in 10 meters of time as mea- diet for this object? Using relativistic expressions,
sured in the laboratory. What is its energy and verify that the velocity of this object equals its
momentum? Its rest energy? Its kinetic energy? momentum divided by its energy.

SOLUTION
From the statement of the problem:

m =  i  kilograms 
r =  10 meters 
X =  8 meters 
y — 0 meters 
2 =  0 meters

From this we obtain a value for the speed:

X  8  m e t e r s  o f  d i s t a n c e
v =  -  = -----------------;------- =  0.8

t 10 meters of time

Use V to calculate the factor 1/(1 — in equation (7-8): 

1 1  1 1
( l_ j ,2 ) i /2  ( i - ( o.8)2)V2 (1 -0 .6 4 )1 /2  (0.36)1/2 0.6 3

From equation (7-11) the energy is

E - m /{\ — t'2)i/2 =  (3 kilograms) (5 /3) =  5 kilograms 

From equation (7-8) momentum has the magnitude

p  =  m v/{\ — r'2)V2 =  (5 /3) X (3 kilograms) X 0.8 =  4 kilograms 

Rest energy of the particle just equals its mass:

ĉest ~  m =  i  kilograms

From equation (7-15) kinetic energy K  equals total energy minus rest energy:

K — E — m =  5 kilograms — 3 kilograms =  2 kilograms 

The Newtonian prediction for kinetic energy is

^Newton =  “ 2 ^  ^ ^  0 96 kilogram

which is a lot smaller than the correct relativistic result. Even at the speed of light, the 
Newtonian prediction would be ^Newton “ 1-5 kilogram, whereas relativistic value would 
increase without limit.
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S A M P L E  P R O B L E M  7 -2

Equation (7-16) says that velocity equals the ratio (magnitude of momentum)/(en- 
ergy):

p 4 kilograms
v =  -  = ---- — ------=  0.8

E 5 kilograms

This is the same value as reckoned directly from the given quantities.

From this comes the relativistic expression for kinetic energy K: 

K =  E — E ^  =  E — m
(1

m r 1 1---------------m =  m \ ------------------- 1-  J (7-15)

Box 7-2 elaborates the relation between this expression and the Newtonian expres­
sion (7-12). Notice that if we divide the respective sides of the momentum equation 
(7-8) by corresponding sides of rhe energy equation (7-11), the result gives particle 
speed:

PV -----
E

(7-16)

We could have predicted this direaly from the first figure in this chapter. Figure 7-1. 
Speed V is the tilt (slope) of the worldline from the vertical: (space displacement)/(time 
for this displacement). Momenergy points along the worldline, with space componentp 
and rime component £. Therefore momenergy slope p/E  equals worldline slope v.

Still M ore Units: In order to convert energy in units of mass to energy in 
conventional units, such as joules, multiply the expressions above by rhe square of 
light speed, ĉ , and use subscript “conv”:

mc^
[good at any speed] {7~ 17)f  =  P f 2  —  —

[1 -  (t'ccnvA) ]̂*/^
'^conv rest

=  (£ -  E^)c^  =  I [1 _  (^_ /,)2]V 2[, ']
K,conv Newton

_  1 . . _  1 , _  1----- mv^c^------m \ ------\ -----
2 2 \  c }  2

mvp.

[particle at rest] (7-18) 

[good at any speed] (7-19)

[low speed only] (7-20)

Thus conversion from energy in units of mass to energy in conventional units is always 
accomplished by multiplying by conversion factor (P. This is true whether rhe expres­
sion for energy being converted is Newtonian or relativistic. T able 7-1 at the end of the 
chapter summarizes these comparisons.

Equation (7-18) is the most famous equation in all physics. Historically, the factor 
(P captured the public imagination because it witnessed to the vast store of energy 
available in rhe conversion of even tiny amounts of mass to heat and radiation. The 
units of truP are joules; the units of m are kilograms. However, we now recognize that 
joules and kilograms are units different only because of historical accidenr. The

Conversion to conventional 
energy units
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M O M E N E R G Y  C O M P O N EN T S
For each of the following cases, write down the vector in the given frame in the form [£, p^, p^, p^]. 
four components of the momentum-energy 4- Each particle has mass m.

a. A particle moves in the positive x-direction in the laboratory with kinetic energy 
equal to three times its rest energy.

b. The same particle is observed in a rocket in which its kinetic energy equals its 
mass.

c. Another particle moves in the y-direction in the laboratory frame with momen­
tum equal to twice its mass.

d. Yet another particle moves in the negative x-direction in the laboratory with total 
energy equal to four times its mass.

e. Still another particle moves with equal x, y, and z momentum components in the 
laboratory and kinetic energy equal to four rimes its rest energy.

SOLUTION
a. Total energy of the particle equals rest energy m plus kinetic energy 3w. Therefore 

its total energy E equals E =  m 5m =  4m. The particle moves along the 
x-direction, sopy=p^ — 0 and p^—p, the total momentum. Substitute the value 
of E into the equation m  ̂ =  E^ — pE to obtain

pE =  £2 m2 = {4m)̂ - m ^  = \6m^ m-2 =

Hence p^ — {DY^^m.
In summary, the components of the momenergy 4-vector are 

[£, p^, py, p j  =  [4m, (15)*/^w, 0, 0]

Of course the magnitude of this momenergy 4-vector equals the mass of the 
particle m —  true whatever its speed, its energy, or its momentum.

b. In this rocket frame, total energy— rest energy plus kinetic energy— has the
value £  =  2m. As before, p'  ̂=  E'̂  — rrP- — {2m)^ — m2 =  4nP- — rrP- =  5m2 . 
Hence p ^ ~ ^  and components of the 4-vector are [£, p,,, py, p ^  =  [2m,5
0 , 0].

c. In this caseP x ~ P z ~ ^  andpy= p =  2m . Moreover, E? =  -\-p'  ̂=  m  ̂4r {2mY 
=  'bmP. So, finally, [£, />,, py, pji =  [5'^^^m, 0, 2m, 0].

d. We are given directly that £  =  4m, the same as in part a, except here the particle 
travels in the negative x-direction so has negative x-momentum. Hence:

[£, p„, py, p2  =  [4m, — (15)*/2«, 0, 0}

e. Total energy equals £  =  bm. All momentum components have equal value, say

P .= P y = P z = P

In this case we use the full equation that relates energy, momentum, and mass: 

{px)^ +  ipy)^ +  ipz)^ ~  =  E  ̂— m  ̂— (5m)^ — m  ̂=  24mP

or =  8m^ and hence [£, px, py, p ^  =  [bm, W-̂ '̂ m,
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ENERGY IN THE LOW-VELOCITY LIMIT
Energy at relativistic speeds and energy at everyday speeds: How are ex­
pressions for these two cases related?

Energy in Terms of Momentum: In the limit of velocities low compared with 
the speed of light, the relativistically accurate expression for energy E  =  (m̂  
+  reduces to E = m -h p /̂(2m) -I- corrections. To see why and how, and to 
estimate the corrections, it is convenient to work in dimensionless ratios. Thus 
we focus on the accurate expression in the form E/m = [1 + (p/m)̂ ]''̂ , or even 
simpler, y = [1 + x]’'̂ , and on the approximation to this result, in the form

E/m = 1 -h (1 /2) I p / m F  + corrections, or y = 1 -h (1 /2) x -h corrections

Example: x = 0.21. Then our approximation formula givesy = (1.21 )'^̂ = 1 
-hO. 105 + a correction. The accurate result is y=  1.100, which is the square 
root of 1.21. In other words, the correction is negative and extremely 
small: correction = —0.005.

Energy in Terms of Velocity: In the limit of velocities low compared with the 
speed of light, the relativistically accurate expression for energy E = m/( 1 — 

reduces to E = m + ( l/2 )m v ^  -t- corrections. It is convenient again to 
work in dimensionless ratios. Thus we focus on the accurate expression in the 
form E/m = [1 — or even simpler, y = [l — x]~'' ,̂ and on the approxi­
mation to this result, in the form

E/m = 1 -h (1 /2) v̂  -h corrections, or y = 1 +  ( M 2 )  x  +  corrections

Example: x = 0.19. Then our approximation formula gives y = 1 -h (1 /2)
0.19 -h a correction == 1.095 +  a  correction. The accurate result is y =  [1 —
0.19]"''^ = (0.81 = (0.9)“ ’ = 1.1 111 . . . In other words, the correc­
tion is positive and small: correction = -1-0.0161 1.

Another example: A jet plane. Take its speed to be exactly v=  10“ *. That 
speed, according to our approximation, brings with it a fractional aug­
mentation of energy, a kinetic energy per unit mass, equal to (1 /2)v  ̂= 5 X  
10“ '̂  or 0.000 000 000 000 5. In contrast, the accurate expression E/m =  
[ 1 -  v2]- ’'2 gives the result E/m = 1.000 000 000 000 500 000 000 009 375 
000 000 000 . . . The 5 a little less than halfway down the length of this 
string of digits is no trifle, as anyone will testify who has seen the conse­
quences of the crash of a jet plane into a skyscraper. However, the 9375 
further down the line is approximately a million million times smaller and 
totally negligible in its practical consequences.

In brief, low speed gives rise to a kinetic energy which, relative to the mass, is 
given to good approximation by (1/2) v̂  or by (1/2) (p/m)̂ . Moreover, the 
same one or other unit-free number (a “ fraction” because it is small com­
pared to unity) automatically reveals to us the order of magnitude of the 
fractional correction we would have had to make in this fraction itself if we 
were to have insisted on a perfectly accurate figure for the kinetic energy.
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FIGURE 7-5. Kinetic energy as a 
function of speed, as predicted by 
relativity [equation (7 -1 9 ), valid  
fo r a l l  speeds] a n d  by Newtonian 
mechanics [equation (7 -2 0 ), v alid  
fo r low speeds only].

^  ~  ''conv

Energy: Time part of momenergy 
4-vector

M ass: Magnitude of that 4-vector

Relativity: All forms of energy 
automatically conserved

conversion factor c ,̂ like the factot of conversion from seconds to meters or miles to 
feet, can today be counted as a detail of convention rather than as a deep new principle.

Central to an understanding of the equation — mot its equivalent -m r
is the subscript “rest.” Energy is not the same as mass! Energy is only the time part of 
the momenergy 4-vector. Mass is the magnitude of that 4-vector. The energy of an 
object, expressed in conventional units, has the value mtf only when that object is 
observed from a frame in which it is at rest. Observed from all other free-float frames, 
the energy of the object is greater than its rest energy, as shown by equation (7-17).

Eigure 7-5 compares relativistic and Newtonian predictions for kinetic energy per 
unit mass as a function of speed. At low speeds the values are indistinguishable (left 
side of the graph). When a particle moves with high speed, however, so that the factor 
l / (  1 ~  has a value much greater than one, relativistic and Newtonian expres­
sions do not yield at all the same value fot kinetic energy (right side of the graph). Then 
one must choose which expression to use in analyzing collisions and other high-speed 
phenomena. We choose the relativistic expression because it leads to the same value of 
the total energy of an isolated system before and after any interaction between particles 
in the system —  it leads to conservation of total energy of the system.

All this talk of reconciliation at low speeds obscures an immensely powerful feature 
of the relativistic expression for total energy of an isolated system of particles. Total 
energy is conserved in all interactions among particles in the system: elastic and 
inelastic collisions as well as creations, transformations, decays, and annihilations of 
particles. In contrast, total kinetic energy of a system calculated using the Newtonian 
formula for low-speed interactions is conserved only for elastic collisions. Elastic 
collisions are defined as collisions in which kinetic energy is conserved. In collisions that 
are not elastic, kinetic energy transforms into heat energy, chemical energy, potential 
energy, or other forms of energy. For Newtonian mechanics of low-speed particles, 
each of these forms of energy must be treated separately: Conservation of energy must 
be invoked as a separate principle, as something beyond Newtonian analysis of 
mechanical energy.

In relativity, all these energies are included automatically in the single time compo­
nent of total momenergy of a system — total energy — which is always conserved for 
an isolated system. Chapter 8 discusses more fully the momenergy of a system of 
particles and the effects of interactions between particles on the energy and mass of the 
system.



7.6 CONSERVATION OF MOMENERGY 
AND ITS CONSEQUENCES

total memenergy of an isolated system of 
particles is conserved

Momenergy puts us at the heart of mechanics. The relativity concept momenergy gives 
us the indispensable tool for mastering every interaction and transformation of parti­
cles.

What does it mean in practice to say in this language of momenergy components 
that the punch given to particle A  by particle B in a collision is exactly equal in 
magnitude and opposite in spacetime direction to the punch given to B by A? That 
gain in momenergy of A is identical to loss of momenergy by B? That the sum of 
separate momenergies of A  and B — this sum itself regarded as an arrow in spacetime, 
the arrow of total momenergy (Figure 7-6) —  has the same magnitude and direction 
after the encounter that it had before? Or, in brief, how does the p rincip le  of 
conservation o f m om energy translate itself into the language of components in a
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-6  momentum

(before onrfafter!)
8

mass

Q:= 15/17

12
mass

o
-5/13

 ̂= -6/10

8 12
mass mass

o  a 16/20

FIGURE 7-6. Conservation of total momenergy in a  collision. Before: The lighter 8-unit mass, 
moving right with V) j  11 light speed, collides with the slower and heavier 12-unit mass moving left (with 5 
units of momentum to the left and 13 units of energy). System: Arrow of total momenergy of the system of two 
particles. Combined momentum of the colliding particles has value — 5 -h =  JO units rightward. 
Combined energy of the two equals 13A -17 =  3 0  units. The total system momenergy is conserved. After: One 
of many possible outcomes of this collision: The 8-unit mass bounces back leftward after collision, but the 
punch that it provided has reversed the direction of motion and increased the speed of the heavier 12-unit 
mass. The handle of the momenergy arrow of each particle gives the true magnitude of that momenergy, 
figured in the Lorentz geometry of the real physical world, as contrasted to the length of that 4-vector as it 
appears in the Euclidean — and therefore misleading— geometry of this sheet of paper. The scale of 
magnitudes in this figure is different from that of Figure 7-3.

Momenergy of a system of 
particles



given free-float frame? Answer: Each component of the momenergy vector, when added 
together for particles A and B,  has the same value after the collision as before the 
collision. In other words,
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Energy of system conserved

'energy of A \ / energy of 6 '' 
before the 1 + I before the 

, encounter /  \  encounter >
( to ta l energy\ 

before the 1 
encounter /

( to tal energy\ 
afte r the 1 
encounter /

( energy of A \  /  energy of
after the 1 "I" I ^fter the

encounter /  \  encounter y
called conservation of the time part of momenergy. Add to this three statements about the 
three space components of momenergy, of which the first one reads.

INVARIANT? CONSERVED? CONSTANT?
Is the speed of light a constant? An invariant? Is mass conserved in a collision? 
Is it an invariant? A constant? Many terms from everyday speech are taken 
over by science and applied to circumstances far beyond the everyday. The 
three useful adjectives invariant, c o n s e r v e d ,  and con sta n t  have distinct mean­
ings in relativity .

Invariant
In relativity a quantity is invariant if it has the same value when measured by 
observers in different free-float frames —  frames in relative motion. First 
among relativistic invariants is the speed of light: It has the same value when 
reckoned using data from the laboratory latticework of recording clocks as 
when figured using data from the rocket latticework. A second central invar­
iant is the interval between two events: All inertial observers agree on the 
interval (proper time or proper distance). A third mighty invariant is the mass 
of a particle. There are many other invariants, every one with its special 
usefulness.

Some very important quantities do not  qualify as invariants. The time between 
two events is not an invariant. It differs as measured by observers in relative 
motion. Neither is the distance between events an invariant. It too differs 
from one frame to another. Neither the energy nor the momentum of a 
particle is an invariant.

Conserved
A quantity is conserved if it has the same value before and after some 
encounter or does not change during some interaction. The total momenergy 
of an isolated system of particles is conserved in an interaction among the 
particles. In a given free-float frame this means that the total energy is 
conserved. So is each component of total momentum. The magnitude of total 
momenergy of a system —  the mass of that system —  is also conserved in an 
interaction. On the other hand, the sum of the individual masses of the
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f  eastward component \  /  eastward component \
of momentum of 1 ^ 1  momentum of B I 

 ̂before the encounter /  \  before the encounter /
eastward component \  
of total momentum I 
before the encounter /

'  eastward component \  
of total momentum I 
after the encounter /

 ̂ eastward component 
of momentum of A 

\ after the encounter
(eastward component'' 

of momentum of B 
after the encounter /

called conservation of the space part of momenergy. Figure 7-6 illustrates the conserva­
tion of momenergy in a recoil collision between two particles. Momentum is laid out

Momentum of system conserved

constituent particles of a system ordinarily is not conserved in a relativistic 
interaction . (For e x a m p le s , se e  C h a p te r  8.)

Constant
Something that is constant does not change with time. The speed of the Great 
Pyramid with respect to the rock plateau of Giza is constant —  equal to zero, 
or at least less than one millimeter per millennium. This speed may be con­
stant, but it is not an invariant: As observed from a passing rocket, the Great 
Pyramid moves with blinding speed! Is the speed of the Great Pyramid con­
served? Conserved during what encounter? There is no b e f o r e  o r  a fte r  to 
which the term “conserved” can refer. The term “ conserved” simply does 
not apply to the speed of the Great Pyramid.

It is true that the speed of light in a vacuum is constant —  it does not change 
with time. It is also true, but an entirely different statement, that the speed of 
light is an invariant—  has the same value measured by different observers in 
uniform relative motion. It is true that total momenergy of an isolated system 
is constant —  does not change with time. It is also true, but an entirely differ­
ent statement, that total momenergy of an isolated system is conserved in a 
collision or interaction among particles in that system.

When anyone hears the word invariant, c o n s e r v e d ,  or constant,  
she is well-advised to listen for the added phrase with r e s p e c t  to, 
which should always be expressed or implied. Usually (but not 
always) con sta n t  means with re s p e c t  to the passage of time. C o n ­
s e r v e d  usually (but not always) means with r e s p e c t  to a  collision or 
interaction. Invariant can have at least as many meanings as there 
are geometries to describe Nature: In Euclidean geometry, d is ­
tance  is invariant as measured with re s p e c t  to relatively rotated 
coordinate axes. In Lorentz geometry, interval and m a ss  are in­
variants as measured with re s p e c t  to free-float frames in relative 
motion. The full meaning of the word invariant or c o n s e r v e d  or 
con sta n t  depends on the condition under which this property is 
invoked.
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M om energy  of system conserved!

right and left on the page; energy is marked off vertically. The left diagram shows two 
particles before collision and their momentum-energy vectors. The right diagram 
shows the corresponding display after the collision.

The center diagram shows total momenergy of the system of two particles. The 
momenergy vectors of the two particles hfore the collision add up to this total; the 
momenergy vectors of the two particles after the collision add up to the same total. 
Total momenergy of the system has the same value after as before: it is conserved in the 
collision.

Well, you’ve done it again: You’ve given us a powerful tool that seems impossible to 
visualize. How can one think about this momenergy 4-vector, anyway? Can you 
personally picture it in your mind’s eye?

We can almost visualize the momenergy arrow, by looking at Figure 7-6 for 
example. There momentum and energy components of a given momenergy vector 
have their correct relative values. And the direction of the momenergy arrow in 
spacetime is correctly represented in the diagram.

However, the magnitude of this arrow— mass of the particle— does not corre­
spond to its length in the momenergy diagram. This is because mass is reckoned 
from the difference of squares of energy and momentum, whereas length of a line on 
the Euclidean page of a book is computed from the sum of squares of horizontal and 
vertical dimensions. The handle or thickened region on the typical arrow and the big, 
boldface number for mass remind us of the failure— the lie— that results from 
trying to represent momenergy on such a page.

To observe a given momenergy 4-vector first from one free-float frame, then from 
another, and then from another (Figure 7-3) is to see the apparent direction of the 
arrow changing. The change in frame brings with it changes in the energy and 
momentum components. However, magnitude does not change. Mass does not 
change. To examine the momenergy 4-vector of a particle in different frames is to 
gain improved perspective on what momenergy is and does.

See if this analogy helps: The momentum-energy 4-vector is like a tree. The tree 
has a location for its base and for its tip whether or not we choose this, that, or the 
other way to measure it. The shadow the tree casts on the ground, however, depends 
upon the tilt of the tree and the location of Sun in the sky.

Likewise, momenergy of a particle as it passes through a given event on its 
worldline has a magnitude and direction, a fixity in spacetime, independent of any 
choice we make of free-float frame from which to observe and measure it. No means 
of reporting momenergy is more convenient for everyday purposes than separate 
specification of momentum and energy of the object in question in some chosen 
free-float frame. Those two quantities separately, however, are like the shadow of the 
tree on the ground. As Sun rises the shadow shortens. Similarly the momentum of a 
car or spaceship depends on the frame in which we see it. In one frame, terrifying. In 
another frame, tame. In a comoving frame, zero momentum, as the tree's shadow 
disappears when Sun lies in exactly that part of the sky to which the tilted tree points. 
In such a special frame of reference, the time component of an object’s momenergy 
— that is, its energy — takes on its minimum possible value, which is equal to the 
mass itself of that object. However, in whatever free-float frame we observe it, the 
arrow of momenergy clings to the same course in spacetime, maintains the same 
length, manifests the same mass.
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7 .7  SUMMARY
momenergy of an object unifies energy, 
momentum, and mass

The m om energy 4-vector of a particle equals its mass multiplied by the ratio of its 
spacetime displacement to proper time— wristwatch time —  for that displacement 
(Section 7.2):

/m o m en erg y \ ^  
V 4-vector /

I  spacetim e \ 
displacem ent 

4-vector
proper time 

for that
\  displacement /

(7-1)

Momenergy of a particle is a 4-vector. It possesses magnitude equal to the particle’s 
mass. The momenergy at any given event in the motion of the particle points in the 
direction of the worldline at that event (Section 7.2).

The momenergy of a particle has an existence independent of any frame of refer­
ence.

The terms momenergy, momentum, and energy, as we deal with them in this book, 
all have a common unit: mass. In older times mass, momentum, and energy were all 
conceived of as different in nature and therefore were expressed in different units. The 
conventional units are compared with mass units in Table 7-1.

The magnitude of the momenergy 4-vector of a particle is reckoned from the 
difference of the squares of energy and momentum components in any given frame 
(Section 7.3):

iPy? -  ip .?

or, more simply.

( E y  -  ( / )'\2 (7-3)

Mass m of the particle is an invariant, has the same numerical value when computed 
using energy and momentum components in the laboratory frame (unprimed compo­
nents) as in any rocket frame (primed components).

In a given inertial frame, the momenergy 4-vector of a particle has four com po­
nents. Three space components describe the momentum of the particle in that frame 
(Sections 7.3 and 7.4):

dx
p^ — m —  

dx

Pz =  m-

dy
dx

dz
dx

(7-2)

The magnitude of the momentum can be expressed as the factor 1/(1 
the Newtonian expression for momentum mv. The result is

- t imes

p  —  mv/(\ — (7-8 )
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The “ time part” of the momenergy 4-vector in a given inertial frame equals energy of 
the particle in that frame (Sections 7.3 and 7.5):

d t
E =  m —  =  ■

m
(7-2), (7-11)

dX ( l - t ^ 2 ) l / 2

For a particle at rest, the energy of the particle has a value equal to its mass:

E ^ ,  =  m (7-13)

For a moving particle, the energy combines two parts: rest energy —  equal to mass of 
the particle— plus the additional kinetic energy K that the particle has by virtue of its 
motion:

E^. +  K- m (7-14)

From these equations comes an expression for k inetic energy: 

K-=  E — m — m \ ---------------— 1[(1 - J (7-15)

The momenergy 4-vector derives from conservation its power to analyze particle 
interactions. Conservation states that the total momenergy 4-vecror of an isolated 
system of particles is conserved, no matter how particles in the system interact with one 
another or transform themselves. This conservation law holds independent of choice of 
the free-float frame in which we employ it (Section 7.6).

In any given inertial frame, conservation of total momenergy of an isolated system 
breaks apart into four conservation laws:

1. Total energy of the system before an interaction equals total energy of the 
system after the interaction.

Velocity from time of flight; 
energy from conservation 
low applied to previous or 
subsequent collisions Gives p  or V 

or E when other 
two are known 
and m is not 
of interest

p = mv/(l -  v^)

Useful in analysis of collisions 
when velocity is not of interest 

and attention is focused 
on testing or applying 

conservation laws

Velocity from time of flight; momentum from 
bending of particle track in magnetic field

FIGURE 7-7. Form ulas th a t relate momentum, energy, mass, a n d  velocity of a n  object, a n d  notes 
about their uses in analyzing experiments. In this diagram, p is the magnitude of the momentum.
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< I j ^ b l e 7 - 7 2 ^

QUANTITIES RELATING TO MOMENERGY
In units of mass 

(for example, E and p 
both in kilograms;

X, y, z, t, T in meters)
Reference
equations

In conventional units
(for example, in joules, 

p ^ ^  in kilogram meters/second;

Energy 

Rest energy 

Kinetic energy

Momentum

Momentum components

Mass

Particle speed

Newtonian low-speed 
Kinetic energy

Momentum
Momentum components

dt
E =  m—  ■dz (1 -  t/2)V2

'rest

K = m ( ------ ---------- l )

p = (1 -  t̂ 2)l/2
dx

P ,-m  — =

dx (1 -  
dy

dx (1 -  
mv.dz

p, — m —  =^ dx (1 -  t/2)i/2 
nP = E^~ p^

_ PV----
E

limit
f̂ Newton ^

pNewton XnV 
Px Newton ~  x

Px Newton VtV^

(7-2, 5, 11, 17) 

(7-13, 18) 

(7-15, 19)

(7-8, 10)

(7-2, 5)

(7-2, 5)

(7-2, 5) 

(7-3) 

(7-16)

(7-12, 20) 

(7-7, 9)

E =  ■
m(P

a  -
F  =  tnc^*-'cnnv re«r

. = m p i----------------------1 I
\ t l  -  /

[1 -  (v_A)^]‘/2
”2̂«eon»

a  -  (t'convA)̂ ]'/̂
______ conv___________

(1 -  (*'convA)̂ )‘̂ ^
>” '̂eeonv

(1 -  (t^_A) )̂>/2

Py conv 

Pz conv

IT __ _ 2
^ con v  Newcon ,2 ^ ^ ^  conw

rco n v  Newton " ‘̂ ^conv

Px conv Newton conv

Py conv Newton fflV y  conv

conv Newton ^ ^ 2  conv

2 . Total x-momentum of the system is the same before and after the interaction.
3. Total y-momentum of the system is the same before and after the interaction.
4. Total z-momentum of the system is the same before and after the interaction.

In this chapter we have developed expressions that relate energy, momentum, mass, 
and velocity. Which of these expressions is useful depends upon circumstances and the 
system we are trying to analyze. Figure 7-7 summarizes these equations and circum­
stances under which they may be useful. Table 7-1 compares energy and momentum 
in units of mass and in conventional units,
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CHAPTE3R 7 EXERCISES

PRACTICE
7-1 momenergy 4-veclor
For each of the following cases, write down the four 
components of the momentum-energy (momen­
ergy) 4-vector in the given frame in the form {E,p^,py, 
p^. Assume that each particle has mass m .Yon  may 
use square roots in your answer.

a A particle moves in the positive x-direction in 
the laboratory with total energy equal to five times its 
rest energy.

b Same particle as observed in a frame in which it 
is at rest.

c Another particle moves in the z-direction with 
momentum equal to three times its mass.

d Yet another particle moves in the negative 
y-direction with kinetic energy equal to four times its 
mass.

e Still another particle moves with total energy 
equal to ten times its mass and x-, y-, and z-compon- 
ents of momentum in the ratio 1 to 2 to 3.

7-2 system mass
Determine the mass of the system of particles shown 
in Figure 7-6. Is this system mass equal to the sum of 
the masses of the individual particles in the system? 
Does the mass of this system change as a result of the 
interaction? Does the momenergy 4-vector of the sys­
tem change as a result of the interaction? (In Chapter

8 there is a lot more discussion about the mass of a 
system of particles.)

7-3 much ado about little
Two freight trains, each of mass 5 X 10® kilograms 
(5000 metric tons) travel in opposite directions on the 
same track with equal speeds of 42 meters/second 
(about 100 miles/hour). They collide head on and 
come to rest.

a  Calculate in milligrams the kinetic energy for 
each train (1 /2)mv^ before the collision. (Newtonian 
expression OK for 100 mph!) (1 milligram =  10~^ 
gram =  10~® kilogram)

b After the collision, the mass of the trains plus 
the mass of the track plus the mass of the roadbed has 
increased by what number of milligrams? Neglect 
energy lost in the forms of sound and light.

7-4 fast protons
Each of the protons described in the table emits a flash 
of light every meter of its own (propet) time dT. 
Between successive flash emissions, each proton trav­
els a distance given in the left column. Complete the 
table. Take the rest energy of the proton to be equal to 
1 GeV =  10’ eV and express momentum in the 
same units. Hints: Avoid calculating or using the 
speed V in relativistic particle problems; it is too close 
to unity to distinguish between protons of radically 
different energies. An accuracy of two significant fig-

-< C l^ j^X E R C IS E  7 -4 ^ ^

FAST PROTONS
Lab distance 
Ax traveled 

between flashes 
(meters)

Momentum mdx/dx 
(GeV)

Energy
(GeV)

Time stretch 
factor y

Lab time 
between flashes 

(meters)

0.1
0

10

103

10̂
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ures is fine; don’t give more. Recall: =  nE
and E =  mdt/d% =  my [note tau!}.

PROBLEMS
7-5 Lorentx transformation for 

momenergy components
The rocket observer measures energy and momentum 
components of a particle to have the values E' and p j , 
py , and p^'. What are the corresponding values of 
energy and momentum measured by the laboratory 
observer? The answer comes from the Lorentz trans­
formation, equation (L-10) in the Special Topic fol­
lowing Chapter 3.

The moving particle emits a pair of sparks closely 
spaced in time as measured on its wristwatch. The 
rocket latticework of clocks records these emission 
events; so does the laboratory latticework of clocks. 
The rocket observer constmcts components of particle 
momentum and energy, equation (7-2), from knowl­
edge of particle mass m, the spacetime displacements 
d t ',d x ' ,d y ' , and dz' derived from the event record­
ings, and the proper time dx computed from these 
spacetime components. Laboratory momenergy com­
ponents come from transforming the spacetime dis­
placements. The Lorentz ttansformation, equation 
(L-10), for incremental displacements gives

dt =  vydx' +  ydt' 
dx =  ydx' -b vydt' 
dy =  dy' 
dz =  dz'

a  Multiply both sides of each equation by the 
invariant mass m and divide through by the invariant 
proper time dx. Recognizing the components of the 
momenergy 4-vector in equation (7-2), show that the 
transformation equations for momenergy are

E =  vyp'^ -b yE'
p . =  yp'. +
Py =  P'y
A = / .

b Repeat the process for particle displacements 
dt, dx, dy, and dz recorded in the laboratory frame to 
derive the inverse transformations from laboratory to 
rocket.

E' =  — vyp„ +  yE 
p \  =  yp. -  vyE 
P'y=Py

7-6 fast electrons
The Two-Mile Stanford Linear Accelerator accelerates 
electrons to a final kinetic energy of 47 GeV (47 X 
10^ electron-volts; one electron-volt =  1.6 X 10“ ^̂  
joule). The resulting high-energy electrons are used 
for experiments with elementary particles. Electro­
magnetic waves produced in large vacuum tubes 
(“klystron tubes’’) accelerate the electrons along a 
straight pipelike structure 10,000 feet long (approxi­
mately 3000 meters long). Take the rest energy of an 
electron to be w ^  0.5 MeV =  0.5 X 10^ electron- 
volts.

a  Electrons increase their kinetic energy by ap­
proximately equal amounts for every merer traveled 
along the accelerator pipe as observed in the labora­
tory frame. What is this energy gain in MeV/meter? 
Suppose the Newtonian expression for kinetic energy 
were correct. In this case how far would the electron 
travel along the accelerator before its speed were equal 
to the speed of light?

b In reality, of course, even the 47-GeV elec­
trons that emerge from the end of the accelerator have 
a speed v that is less than the speed of light. W hat is 
the value of the difference {I ~  p) between the speed 
of light and the speed of these electrons as measured in 
the laboratory frame? [Hint: For v very near the value
unity, 1 (1 +  v){\ - v ) ^  2(1 -  v).-\ Let
a 4 7-GeV electron from this accelerator race a flash of 
light along an evacuated tube straight through Earth 
from one side to the other (Earth diameter 12,740 
kilometers). How far ahead of the electron is the light 
flash at the end of this race? Express your answer in 
millimeters.

C How long is the “3000-meter’’ accelerator 
tube as recorded on the latticework of rocket clocks 
moving along with a 47-GeV electron emerging from 
the acceletatot?

7-7 super cosmic rays
The Haverah Park extensive air shower array near 
Leeds, England, detects the energy of individual cos­
mic ray particles indirectly by the resulting shower of 
particles this cosmic ray creates in the atmosphere. 
Between 1968 and 1987 the Haverah Park array 
detected more than 25,000 cosmic rays with enetgies 
greater than 4 X 10^  ̂ electron-volts, including 5 
with an energy of approximately 10^° electron-volts, 
(rest energy of the proton = 1 0 ^  electron-volts =  
1.6 X 10~^“ joule)

a  Suppose a cosmic ray is a proton of energy 10^° 
electron-volts. How long would it take this proton to 
cross our galaxy as measured on the proton’s wrist- 
watch? The diameter of our galaxy is approximately
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10’ light-years. How many centuries would this trip 
take as observed in our Earth-linked frame?

b The research workers at Haverah Park find no 
evidence of an upper limit to cosmic ray energies. A 
proton must have an energy of how many times its 
rest energy for the diameter of our galaxy to appear to 
it Lorentz-contracted to the diameter of the proton 
(about 1 femtometer, which is equal to 10“ ’̂ 
meters)? How many metric tons of mass would have 
to be converted to energy with 100-percent efficiency 
in order to give a proton this energy? One metric ton 
equals 1000 kilograms.
Reference: M. A. Lawrence. R. J. O, Reid, and A. A. Watson, 
Journal of Physics G: Nuclear and Particle Physics, Volume 17, pages
733-757 (1991).

7-8 rocket nucleus
A radioactive decay or “inverse collision” is observed 
in the laboratory frame, as shown in the figure.

Suppose that =  20 units, m Q = 2  units, and 
£ ( -= 5  units.

a What is the total energy £^ of particle A? 
b From the conservation of energy, find the total 

energy (rest plus kinetic) of particle D.
c Using the expression =  ni  ̂ find the

momentum pc of particle C.
d From the conservation of momentum, find the 

momentum p^, of particle D.
e What is the mass of particle D? 
f  Does me +  m ,̂ after the collision equal 

before the collision? Explain your answer.
g Draw three momenergy diagrams for this re­

action similar to those of Figure 7-6: BEFORE, SYS­
TEM, and AFTER. Plot positive and negative mo­
mentum along the positive and negative horizontal 
direction, respectively, and energy along the vertical 
direction. On the AFTER diagram draw the momen­
ergy vectors for particles C and D  head to tail so that 
they add up to the momenergy vector for the system. 
Place labeled mass handles on the arrows in all three 
diagrams, including the arrow for the system.

particle A particle 6

BEFORE

particle C  
(at rest)

AFTER
EXERCISE 7-9. Two particles collide to form a  third at rest in the 
laboratory frame.

7-9 sticky collision
An inelastic collision is observed in the laboratory 
frame, as shown in the figure. Suppose that =  2 
units, £^ =  6 units, ~  15 units.

a From the conservation of energy, what is the 
energy Eg of particle B?

b W hat is the momentum p^ of particle A? 
Therefore what is the momentum pg of particle B?

c From m  ̂=  E^ — p^ find the mass mg of par­
ticle B.

d Quick guess: Is the mass of particle C after the 
collision less than or greater than the sum of the 
masses of particles A and B before the collision? Vali­
date your guess from the answer to part c.

7-10 colliding putty balls
A ball of putty of mass m and kinetic energy K  streaks 
across the frozen ice of a pond and hits a second 
identical ball of putty initially at rest on the ice. The 
two stick together and skitter onward as one unit. 
Referring to the figure, find the mass of the combined 
particle using parts a - e  or some other method.

a W hat is the total energy of the system before 
the collision? Keep the kinetic energy K explicitly, and 
don’t forget the rest energies of both particles A and 
B .  Therefore what is the total energy E c  of particle C 
after the collision?

b Using the equation m  ̂— E^ — p^ =  {m - \-  

K)2  — p 2 momentum p̂  ̂of particle A before
the collision. What is the total momentum of the 
system before the collision? Therefore what is the 
momentum pc of particle C after the collision?

particle A  
(at rest)

particle C

Q
particle D

BEFORE AFTER
EXERCISE 7-8. Radioactive decay of a  particle.

o—
particle A particle B

(at rest)

BEFORE
EXERCISE 7-10 . Two putty balls stick together.

particle C

AFTER
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c Again use the equation to find
the mass me of particle C  Show that the result satisfies 
the equation

te  — {2my +  2mK =  {2mY ( - 9
d Examine the result of part c in two limiting 

cases. (1) The value of mc 'tn the Newtonian low-ve­
locity limit in which kinetic energy is very much less 
than mass: K/m  «  1. Is this what one expects from 
everyday living? (2) W hat is the value of in the 
highly relativistic limit in which K/m  »  1? W hat is 
the upper limit on the value of m ^  D iscussion: 
Submicroscopic particles moving at extreme relativis­
tic speeds rarely stick together when they collide. 
Rather, their collision often leads to creation of addi­
tional particles. See Chapter 8 for examples.

e Discussion question: Are the results of part 
c changed if the resulting blob of putty rotates, whir­
ling like a dumbbell about its center as it skitters 
along?

7-11 limits off Newtonian 
mechanics

a  One electron-volt (eV) is equal to the increase 
of kinetic energy that a singly charged particle experi­
ences when accelerated through a potential difference 
of one volt. One electron-volt is equal to 1.60 X 
10“ *̂  joules. Verify the rest energies of the electron 

and the proton (masses listed inside the back cover) in 
units of million electron-volts (MeV).

b The kinetic energy of a particle of a given 
velocity v is not correctly given by the expression 
1/2 mv^. The error

(relativistic expressions 
for kinetic energy / (Newtonian expressions 

for kinetic energy /

(Newtonian expressions 
for kinetic energy I

is one percent when the Newtonian kinetic energy has 
risen to a certain fraction of the rest energy. What 
fraction? Hint: Apply the first three terms of the 
binomial expansion

(1 + Z )’’ - 1 +  «z H—  «(« 
2

1) +  . . .

to the relativistic expression for kinetic energy, an 
accurate enough approximation if |z| «  1. Let this 
point—  where the error is one percent— be arbitrar­
ily called the “limit of Newtonian mechanics.” What

is the speed of the particle at this limit? At what 
kinetic energy does a proton reach this limit (energy in 
MeV)? An electron?

c An electron in a modern color television tube is 
accelerated through a voltage as great as 25,000 volts 
and then directed by a magnetic field to a particular 
pixel of luminescent material on the inner face of the 
tube. Must the designer of color television tubes use 
special relativity in predicting the trajectories of these 
electrons?

7-12 derivation off the
reiativistic expression ffor 
momentum— a worked 
example

A very fast particle interacts with a very slow particle. 
If the collision is a glancing one, the slow particle may 
move as slowly after the collision as before. Reckon 
the momentum of the slow-moving particle using the 
Newtonian expression. Now demand that momen­
tum be conserved in the collision. From this derive the 
relativistic expression for momentum of the fast- 
moving particle.

The top figure shows such a glancing collision. 
After the collision each particle has the same speed as 
before the collision, but each particle has changed its 
direction of motion.

Behind this figure is a story. Ten million years ago, 
and in another galaxy nearly ten million light-years 
distant, a supernova explosion launched a proton 
toward Earth. The energy of this proton far exceeded 
anything we can give to protons in our earthbound 
particle accelerators. Indeed, the speed of the proton 
so nearly approached that of light that the proton’s 
wristwatch read a time lapse of only one second be­
tween launch and arrival at Earth.

We on Earth pay no attention to the proton’s 
wristwatch. For our latticework of Earth-linked ob­
servers, ages have passed since the proton was 
launched. Today our remote outposts warn us that 
the streaking proton approaches Earth. Exactly one 
second on our clocks before the proton is due to arrive, 
we launch our own proton at the slow speed one 
meter/second almost perpendicular to the direction 
of the incoming proton (BEFORE part of the top 
figure). Our proton saunters the one meter to the 
impact point. The two protons meet. So perfect is our 
aim and timing that after the encounter our proton 
simply reverses direction and returns with the same 
speed we gave it originally (AFTER part of the top 
figure). The incoming proton also does not change 
speed, but it is deflected upward at the same angle at 
which it was originally slanting downward.
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i  I
Earth Frame: BEFORE Earth Frame: AFTER

EXERCISE 7-12. Top; A symmetric elastic collision between a  fast proton and a  slow proton in which each 
proton changes direction hut not speed as a  result of the encounter. Center: Events and separations as 
observed in Earth frame before the collision. Here x =  10  million light-years and y =  I meter, so these 
figures are not to scale! Bottom; Events and separations as observed in the rocket frame before the collision.

How much does ^/-momentum of our slow-mov­
ing proton change during this encounter? Newton can 
tell us. At a particle speed of one meter/second, his 
expression for momentum, mv, is accurate. Our pro­
ton simply reverses its direction. Therefore the change 
in its momentum is just 2 mv, twice its original mo­
mentum in the y-direction.

What is the change in the y-momenmm of the 
incoming proton, moving at extreme relativistic 
speed? We demand that the change in j-momentum 
of the fast proton be equal in magnitude and opposite 
in direction to the change in y-momentum of our slow 
proton. In brief, y-momentum is conserved. This de­
mand, plus a symmetry argument, leads to the rela­
tivistic expression for momentum.

Key events in our story are numbered in the center 
figure. Event 1 is the launching of the proton from the 
supernova ten million years (in our frame) before the 
impact. Event 2 is the quiet launch of our local proton 
one second (in our frame) before the impaa. Event 0 
is the impact itself. The x-direction is chosen so that 
y-displacements of both protons have equal magni­
tude between launch and impact, namely one meter.

Now view the same events from a rocket moving 
along the x-axis at such a speed that events 1 and 0 are

vertically above one another (botrom figure). For the 
rocket observer the transverse y-separations are the 
same as for the Earth observer (Section 3.6), soy =  1 
meter in both frames. The order of events 1 and 2, 
however, is exactly reversed in time: For the racket 
observer, we released our proton at high speed ten 
million years before impact and she releases hers one 
second before the collision. Otherwise the diagrams 
are symmetrical: To make the bottom figure look like 
the center one, exchange event numbers 1 and 2, then 
stand on your head!

Rocket observer and Earth observer do not agree 
on the time between events 1 and 0, but they agree on 
the proper time Tm between them, namely one sec­
ond. They also agree on the propet time T20 between 
events 2 and 0. Moreover, because of the symmetry 
between the center and bottom figures, these two 
proper times have the same value: For the case we 
have chosen, the wristwatch (proper) time for each 
proton is one second between launch and impact.

no > •20

We can use these quantities to construct expres­
sions for the y-momenta of the two protons. Both are
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protons, so their masses m are the same and have the 
same invariant value for both observers. Because of 
the equality in magnitude of they-displacements and 
the equality of Tjo and T,o, we can write

y _  y
m -------- M ---------  [both frames]

"fio '̂ 20

The final key idea in the derivation of the relativis­
tic expression for momentum is that the slow-moving 
proton travels between events 2 and 0 in an Earth- 
measured time that is very close in value to the proper 
time between these events. The vertical separation y 
between events 2 and 0 is quite small; one meter. In 
the same units, the time between them has a large 
value in the Earth frame: one second, or 300 million 
meters of light-travel time. Therefore, for such a 
slow-moving proton, the proper time X20 between 
events 2 and 0 is very close to the Earth time (20  

between these events;

T 20 ^  2̂0 [Earth frame only]

Hence rewrite the both-frames equation for the 
Earth frame:

y  _ _  y
M -------- t n  --------  [Earth frame only]

1̂0 2̂0

The right side of this equation gives the y-momenturn 
of the slow proton before the collision, correctly cal­
culated using the Newtonian formula. The change in 
momentum of the slow proton during the collision is 
twice this magnimde. Now look at the left side. We 
claim that the expression on the left side is the y-mo- 
mentum of the very fast proton. They-momentum of 
the fast proton also reverses in the collision, so the 
change is just twice the value of the left side. In brief, 
this equation embodies the conservation of the y- 
component of total momentum in the collision. Con­

clusion: The left side of this equation yields the rela­
tivistic expression for y-momentum: mass times 
displacement divided by proper time for this displace­
ment.

What would be wrong with using the Newtonian 
expression for momentum on the left side as well as on 
the right? That would mean using earth time 
instead of proper time T,o in the denominator of the 
left side. But is the time it took the fast proton to 
reach Earth from the distant galaxy as recorded in the 
Earth frame —  ten million years or 320 million mil­
lion seconds! With this substitution, the equation 
would no longer be an equality; the left side would be 
320 million million times smaller in value than the 
right side (smaller because r,o would appear in the 
denominator). Nothing shows more dramatically 
than this the radical difference between Newtonian 
and relativistic expressions for momentum —  and the 
correctness of the relativistic expression that has 
proper time in the denominator.

This derivation of the relativistic expression for 
momentum deals only with its y-component. But the 
choice of y-direction is arbitrary. We could have in­
terchanged y and x  axes. Also the expression has been 
derived for particles moving with constant velocity 
before and after the collision. When velocity varies 
with time, the momentum is better expressed in terms 
of incremental changes in space and time. For a parti­
cle displacement dr between two events a proper time 
dx apart, the expression for the magnitude of the 
momentum is

dr
p =  m —
^  dx

One-sentence summary; In order to preserve con­
servation of momentum for relativistic collisions, 
simply replace Newton’s “universal time” t in the 
expression for momentum with Einstein’s invariant 
proper time T .
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8.1 THE SYSTEM
an isolated island of violence

Particle physics is one of the gteat adventures of our time. No one can venture into the 
heart of it without momenergy as guide and lamp. Particles clash, yes. But however 
cataclysmic the encounter, it always displays one great simplicity. It takes place on a 
local stage, an island of violence, apart from all happenings in the outside world. In 
other isolated arenas of action football players form a team, actors a troupe, soldiers a 
platoon; but in a battle of matter and energy, the participants receive the name 
system.

What the action starts with, what particles there are, what speeds they have, what 
directions they take: that’s the story of the system at the start of the action. We may or 
may not pursue in all detail every stage of every encounter, as we view the scenes of a 
play or watch the episodes of a game. However, nothing that claims to be an account of 
the clash, brief though it may be, is worthy of the name unless it reports every 
participant that leaves the scene with its speed and its direaion. Departing, they still 
belong to the system. Moreover, at every step of the way from entry to departure we 
continue to use for the collection of participants the name system.

The child keeps count of who wins and who loses in the shoot-out before he or she 
learns to ask questions of right and wrong, of why and wherefore. We likewise keep 
tabs on what goes into an encounter and what comes out only to the extent of 
broadcasting the participants’ momenergies before and after the act of violence. We do 
not open up in this book the more complex story of the forces, old and new, that 
govern the chances for this, that, and the other outcome of a given encounter. We limit 
outselves to the ground mles of momenergy conservation in an isolated system,

2 2 1

Keep score of momenergy for 
the system
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8.2 THREE MODEST EXPERIMENTS
elastic glass balls; inelastic wads off gum; 
weighing heat

Elastic collision: Momenergy 
automatically conserved

A collision does not have to be violent to qualify for attention nor be exotic to make 
momenergy scorekeeping interesting. It is fun to begin with momenergy scorekeeping 
for three encounters of everyday kinds before strolling out onto the laboratory floor of 
high-energy particle physics.

First Experim ent: Elastic Collision. Suspend two identical glass marbles from 
the ceiling by two threads of the same length so that the marbles hang, at rest, just 
barely touching. Draw one back with the finger and release it (Figure 8-1). The 
released marble gathers speed. The speed peaks just as the first marble collides with the 
second. The collision is elastic: Total kinetic energy before the collision equals total 
kinetic energy after the collision. The elastic collision brings the first marble to a 
complete stop. The impact imparts to the second all the momentum the first one had. 
Conservation of momentum could not be clearer:

/  total momentum \  
to the right just 

before the collision, 
all of it resident on 

'  the first marble '

/  total momentum \  
to the right just 

afte r the collision, 
all of it resident on 

'th e  second marble/

Inelastic collision: Momenergy 
also conserved

And energy? In the collision the two particles exchange roles. The first patticle comes to 
a halt. The second particle moves exactly as the first one did before the collision. Hence 
energy too is clearly conserved.

Just before the collision and just after: How do conditions compare? Same total 
momentum. Same total energy. Therefore same total momenergy.

Second Experim ent: Inelastic Collision. Replace the two glass marbles by two 
identical balls of putty, wax, or chewing gum (Figure 8-2). Pull them aside by equal 
amounts and release.

Both released balls of chewing gum gather speed, moving toward one anorher. The 
equal and opposite velocities peak just before they collide with each other. By 
symmetry, the momentum of the right-moving particle has the same magnitude as the 
momentum of the left-moving particle. However, these momenta point in opposite 
directions. Regarded as vectors, they sum to zero. The momentum of the system 
therefore equals zero just before the collision.

Just after rhe collision? The two balls have stuck together. They are both at rest; 
each has zero momentum. Their combined momentum is also zero. In other words.

LAB RECORDS, INC.| i|

FIGURE 8-1. One marble collides elastically with another.
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FIGURE 8-2. One ball of chewing gum locks onto the other.

the momentum of the system is zero after the collision. Zero it was also before the 
collision. Thus the momentum of the system is conserved.

For system energy the outcome is more perplexing. Just before the collision, each 
ball has an energy consisting of its mass m and its kinetic energy K. These energies add 
to make the total energy of the system: =  2m +  2K.

After the collision? Both balls of chewing gum are at rest, stuck together as a single 
blob, which now constitutes the entire system. The energy of that stationary blob must 
be its rest energy, equal to the mass of the system: Fsystem “  r̂est ~  ■̂ system- What is the 
value of that system energy? It must be the same as the energy of the system before the 
collision, equal to 2m +  2K, where m is the mass of each ball before the collision. 
Hence, if energy is conserved, =  2w +  2K. This is greater than the sum of
masses of the incoming particles.

Where does this extra mass come from? The energy of relative motion of the 
incoming particles gets converted, during the collision, into energy of plastic deforma­
tion and heat. Each of these forms of locked-in energy yields an increment of mass. In 
consequence the mass of the pair of balls, stuck together as one, exceeds the sum of 
masses of the two balls before impact.

T h ird  Experim ent: W eighing Heat. If warmed and distorted balls of gum 
have more mass than cool and undistorted balls, then maybe we can measure directly 
the increased mass simply by heating an object and weighing it. In this case the system 
consists of a single large object, such as a tub of water, stationary and therefore with 
zero total momentum. System energy consists of the summed individual masses of all 
water molecules plus the summed kinetic energies of their random motions. This 
summed kinetic energy increases as we add heat to the water; hence its mass should 
increase. Can we detect the corresponding increase in weight as we heat the water in the 
tub?

Alas, never yet has anyone succeeded in weighing heat. In 1787 Benjamin Thomp­
son, Count Rumford (1 7 5 3 - 1814), tried to detect an increase in weight of barrels of 
water, mercury, and alcohol as their temperature rose from 29° E to 6 l ° E (in which 
range ice melts). He found no effect. He concluded “that ALL ATTEMPTS TO 
DISCOVER ANY EFFECTS OF HEAT UPON THE APPARENT WEIGHTS 
OF BODIES WILL BE ERUITLESS” (capital letters his). Professor Vladimir Bra­
ginsky of the University of Moscow once described to us a new idea for weighing heat. 
Let a tiny quartz pellet hang on the end of a long thin near-horizontal quartz fiber, like 
a reeled-in fish at the end of a long supple fishing rod. A fly that settles on the fish 
increases its weight; the fishing rod bends a little more. Likewise heat added to the 
pellet will increase its mass and will bend the quartz-fiber “fishing rod” a little more. 
That is the idea. The sensitivity required to detect a bending so slight unfortunately 
surpasses the present limit of technology. Braginsky himself already has invented, 
published, and made available to workers all over the world a now widely applied 
scheme to measure very small effects. There is real hope that he— or someone 
else — will weigh heat and confirm what we already confidently expect.

Kinetic energy converted to moss

Con we weigh heat? 
Not yet!
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FIGURE 8-3. Two noninteracting particles, 
each of mass 8, are in relative motion. Taken 
together, they constitute a system of mass 20. 
Where does the mass 2 0  reside? In the system!

8.3 MASS OF A  SYSTEM OF PARTICLES
energies add. momenta add. masses do not add.

No one with any detective instincts will rest content with the vague thought that heat 
has mass. Where within our stuck-together wads of chewing gum or Rumford’s barrel 
of water or Braginsky’s quartz pellet is that mass located? In random morions of the 
atoms? Nonsense. Each atom has mass, yes. But does an atom acquire additional mass 
by virtue of any motion? Does motion have mass? No. Absolutely not. Then where, 
and in what form, does the extra mass reside? Answer: Not in any part, but in the 
system.

Heat resides not in the particles individually but in the system of particles. Heat 
arises not from motion of one particle but from relative motions of two or more 
particles. Heat is a system property .

The mass of a system is greatet when system parts move telative to each other. O f 
this central point, no simplet example offers itself than a system composed of a single 
pait of masses. Our example? Two identical objects (Figure 8-3). Each has mass 8. 
Relative to the laboratory frame of reference each object has momentum 6, but the two 
momenta are opposite in direction. The energy of each object is E =  (jrP- -f  =  
(8" +  6^)V2 =  10.

The total momentum of the two-object system is / ’system — 6 — 6 =  0. The energy of 
the system is =  10 +  10 =  20. Therefore the mass of the system is Msystem “  
(Esystem̂  ~ / ’system̂) ~  [(20)^ — 0^]*/  ̂=  20. Thus the mass of the system exceeds the 
sum of the masses of the two parts of the system. The mass of the system does not agree 
with the sum of the masses of its parts.

Energy is additive. Momentum is additive. But mass is ttol additive.
Ask where the extra 20 — 16 =  4 units of mass are located? Silly question, any 

answer to which is also silly!
Ask where the 20 units of mass are located? Good question, with a good answer. 

The 20 units of mass belong to the system as a whole, not to any part individually.
Where is the life of a puppy located? Good question, with a good answet. Life is a 

property of the system of atoms we call a puppy, not a property of any part of the 
puppy.

Where is the extra ingredient added to atoms to yield a live puppy? Unacceptable 
question, any answer to which is also unacceptable. Life is not a property of any of the 
individual atoms of which the puppy is constituted. Nor is it a property of the space 
between the atoms. Nor is it an ingredient that has to be added to atoms. Life is a 
ptoperty of the puppy system.

Life is remarkable, but in one respect the two-object system that we are talking 
about is even more remarkable. Life requires organization, but the two-object system 
of Figure 8-3 lacks organization. Neither mass interacts with the other. Yet the total 
energy of the two-object system, and its total momentum, regarded from first one 
frame of reference, then another, then another, take on values identical in every respect 
to the values they would have were we dealing throughout with a single object of mass 
20 units. Totally unlinked, the two objects, viewed as a system, possess the dynamic 
attributes —  energy, momentum, and mass —  of a single object.

This wider idea of mass — the mass of an isolated system composed of disconnected 
objects: what right have we to give it the name “mass”? Nature, for whatever reason, 
demands conservation of total momenergy in every collision. Each collision, no matter 
how much it changes the momenergy of each participant, leaves unchanged the sum of 
their momenergies, regarded as a directed arrow in spacetime— a 4-vector. Encounter 
or no encounter, and however complex any encounter, system momenergy does not 
alter. Neither in spacetime direction nor in magnitude does it ever change. But the 
magnitude —  the length of the arrow of total momenergy, figured as we figure any 
spacetime interval —  is system mass. Whether the system consists of a single object or
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of many objects, and whether these objects do or do not collide or otherwise interact 
with each other, this system mass never changes. That’s why the concept of system 
mass makes sense!

An example? Again, two objects of mass 8, again each moving toward a point 
midway between them z.tv =  (momentum)/(energy) =  (p = 6 ) /(E  =  10) =  3/5  the 
speed of light. Now, however, we analyze the two motions in a frame moving with the 
right-hand object (Figure 8-4). In this new frame the right-hand object is at rest: mass, 
m =  8; momentum, p =  0\ energy, E =  [m  ̂ -b p^V^^ =  8. The left-hand object is 
approaching with a speed (addition of velocities: Section L.7 of the Special Topic 
following Chapter 3; also Exercise 3-11)

3/5  +  3/5 6/5
1 +  (3/5)(3/5) 34/25 17

It has energy E =  m /[l — — 8 / [ l  — (15/17)^}*/^ — 17 and momentum p —
vE =  15. So much for the parts of the system! Now for the system itself. For the system
the energy is E^^^^ — 8 + 1 7  — 25 and the momentum is p^ 0 +  15 =  15.

Now for the test! Does the concept of system mass make sense? In other words, does 
system mass turn out to have the same value in the new frame as in the original frame? 
It does:

^ s y s te m  =  ( ^ s ,
^2)1/2 =  |-(25)2 -  (i5)2]i/2 =  i;625 -  225]!/^

=  I400y/^ -- 20

Different free-float frames. 
Same system mass.

8
mass 8 energy

25 energy

BEFORE

8
mass

O -

8

15/17

SYSTEM
(before one/after!)

AFTER

20
mass

'= 3 /5

FIGURE 8-4. System of Figure 8-3  observedfrom a  fram e moving w ith the right-hand object. The
right-hand object is therefore initially at rest. Before: Arrows of momenergy for two objects before collision. 
Each object has a mass of eight units (shaded handles). The upper, vertical, arrow belongs to the particle 
originally at rest, the slanted arrow to the incoming particle. System: Addition of the two momenta (one of 
them zero!) gives the total momentum before collision. Similarly, addition of the two energies gives the total 
energy. Mass of the system — even before the two particles interact!— comes from the expression for the 
"hypotenuse” of a spacetimelike triangle. Result: 2 0  units of mass (shaded handle on center 4-vector):

(mass)^ =  (energy)^ — (momentum)^ =  (25F ~  (D F  ~  625 — 225  =  4 0 0  =  (20)^

After: The two particles now collide and amalgamate to form one particle. Arrow of total momenergy after 
the amalgamation is identical to arrow of total momenergy before the collision. Mass of this two-object system 
exceeds the mass of one object plus the mass of the other, not only after the collision but also before. Mass is not 
an additive quantity.
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S A MP L E  P R O B L E M  8-1
MASS OF A SYSTEM OF 
MATERIAL PARTICLES
Compute Msystem for each of the following systems. 
The particles that make up these systems do not 
interact with one another. Express the system mass

System a
(kinetic energy = K = 3m] 

------ ►

System b

System c

System d

(kinetic energy = K = 5m)

' O -------------------- ^

3m o (energy = E  = 7m)

o
(E=  6m)

' O
(E = 6m)

SOLUTION

in terms of the unit mass m-, do not use momenta or 
velocities in your answers. [Note: In the following 
diagrams, arrows represent (3-vector) momenta.}

m (at rest)

(kinetic energy = K  = 5m)

'O-------------- ^

m ( 3  rest)

System a: System energy equals the rest energy of the two particles (the sum of their 
masses) plus the kinetic energy of the moving particle: =  (»z -h w) -f 3»z =  5m.
Squared momentum of the system equals that of the moving particle: ~  P ^~
E?- — m  ̂=  {AmY — mA= \ 5m^. Mass of the system is reckoned from the difference 
between the squares of energy and momentum:

ŝystem • ~  =  [lOY/^m =  3.162 m

Moreover, if the two objects collide and amalgamate, the system energy remains at the 
value 25, the system momentum remains at the value 15, and the system mass 
remains 20, as illustrated in Figure 8-4.

In summary, the mass of an isolated system has a value independent of the choice of 
frame of reference in which it is figured. System mass remains unchanged by en­
counters between the constituents of the system. And why? Because the system mass is 
the length (in the sense of spacetime interval) of the arrow of total momentum-energy. 
This momenergy total is unaffected by collisions among the parts or by any transfor­
mations, decays, or annihilations they may undergo. System mass does make sense!

System! System! You keep talking about “system,” even when the particles do not 
interact, as in the system of Figure 8-3- It seems to me th at you are totally arbitrary in 
the way you define a  system. Who chooses which particles are in the system?
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System b: System energy equals rest energy of the two particles plus kinetic energy of 
the two particles; =  2w +  lOm =  \2m. Squared momentum of each particle is
^  =  E^ — np- ' 
twice this: p

(<amp vr i'bnP yieldingp — (35)*/^»2. System momentum is
=  2 (35)*^^ m. The mass of the system is

=  t w  -  -  {2 (35)‘/2^}2]V2

=  [144

r  system

l40V/^m [4}*/^w =  2m

In this one special case the mass of the system equals the sum of masses of the objects 
that make up the system. We could have seen this result immediately by observing the 
system from a reference frame that moves along with the particles. In this frame the 
particles are at rest and have zero total momenmm; the total energy is identical to the 
sum of the individual rest energies (the individual masses). So in this case the mass of 
the system is equal to its energy, which is equal to the sum of masses. Moreover, system 
mass is an invariant. Thus 2m is the mass of the system as reckoned in ail reference 
frames, including the one in which System b is pictured.

System c: Total energy =  system energy =  £,^5̂  =  Im ■¥ m =  8w. System 
momentum equals the momentum of the moving particle: p^^n^ =  EP ~  m  ̂ — 
{Imp — {im p  =  49»2  ̂ ~  9m^ =  40m^. Hence the system mass is

, =  \G4m^ -  40»z2}i/2 =  \24p/^m  =  4.899«

System d: This part of the problem serves as a reminder that momentum is a 
Euclidean 3-vector. The squared momentum of each particle is pP =  EP — m  ̂=  iEjtrP 
— mP =  35w^. Their total momentum is not the algebraic sum of the momenta, 
because they are vectors pointing in perpendicular directions. This perpendicular 
orientation allows us to equate the squared system momentum to the sum of the 
squares of the individual momenta: / ’system̂ ~  35t»^ +  iimP — lOm^. System energy is 
the sum of the energies (energy is a scalar and adds like a scalar!): E^^^^ =  6m +  6m =  
\2m. Hence system mass is

[144«2 -  70»?2]i/2 =  {74}i/2y„ == 8.602w

Compare this result with that of System b, which also contained two particles, each of 
total energy 6m.

We do! We can draw the dashed line around any collection of objects whatever, 
subject to this one restriction: no object in our system may interact with any external 
object or experience a force from outside the system. Our system must be isolated. 
W ith that single limitation, the system we choose is arbitrary, has a conserved total 
energy, a conserved total momentum, and a system mass that is invariant —  a mass 
that has the same value no matter in which free-float frame it is reckoned.

7 can't believe the story you tell. Those two mass-8 objects, you say, may fly past each 
other. Then your talk about the system mass is just talk, terminology. Or they may whang 
into each other and amalgamate. Then your talk is all wrong, and for an obvious reason. 
As the objects collide they slow and come to rest relative to each other. A t that instant 
and in that “rest frame" {the frame of Figure 8-3), each has zero momentum, and 
energy equal to its mass. So the total momentum of the system is zero, and its total energy 
is 8 4- 8 =  16. That means a mass of 16. Yet you claim 20.
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- < J A B L E  8 - T ^

CLEOPATRA’S VASE, HER BATH, AND INTERSTELLAR VACUUM: 
ILLUSTRATIVE FRACTIONAL CHANGES IN MASS OF SYSTEMS

System  before System  after

F ra a io n a l in aea se  
in  system  m ass 

(to  nearest pow er o f  10)

O ne-k ilo g ram  vase V ase sm ashed  in to  so m any  fragm en ts th a t  100  
centim eters^ o f  glass-to-g lass b onds are b roken

1 0 ~ '“

B a th  w ater a t  15° C B ath  w ater a t  4 0 °  C io-'2
W a te r  ( H , 0 ) A tom ic  hydrogen  (H )  an d  oxygen (O ) 10-9

E arth A ll m olecules o f  E arth  lifted  against th e  p u ll o f  their 
m u tu a l g rav ity  to  infinite separa tion  fro m  o ne  an o th er

1 0 ^

H ydrogen  a to m  in low est 
energy sta te

E lectron w ith d raw n  to  infinite separa tion  from  nucleus io-»

D eu teron D eu teron  separa ted  in to  p ro to n  an d  neu tro n 1 0 - ’

N e u tro n  sta r W id ely  separa ted  iron a to m s a t  tes t w ith  te s p e a  to  
each o ther

1 0 - '

A  v acuum , before it is zapped  
by  converging p ho tons

E le c tro n -p o s itro n  pa ir  b o u n d  as a  p o sitron ium  a to m Infin ite  f ra a io n a l 
in a e a s e

Slow and come to rest? Yes. But that means force: “elastic,” gravitational, elearo- 
magnetic, or nuclear force. That’s the new and valuable point you make here. And 
those particles, pushing against that force, store up energy. This energy, too, has to 
be put into the bookkeeping. When amalgamating particles come to rest relative to 
one another, the energy of interaction “balances the books” — it so happens— and 
leads to a final mass of 20, greater than the sum of masses of the original objects. For 
the figuring of system mass, however, we really don’t have to get into this detail. It is 
enough for us to know that total momentum is c o n s e r v e d , =  0 in Figure 8-3, 
and total energy— in whatever way it is apportioned between the objects and the 
fields of force that act between them— is also conserved, =  20. The length, in 
the sense of interval, of the 4-vector of momenergy for the system remains un­
changed: =  20.

System energy increase? 
System mass can increase.

W hat about a system that is not isolated? A system that has —  and keeps— zero 
momentum, but receives an increment of energy? Then its mass rises by an amount 
exactly equal to that input of energy. The increase in mass is the same whether that 
energy goes into altering the relative motion of the parts of the system or increasing the 
energy of interaction between them or some combination of motion and interaction. 
Supply energy to a system by heating it or setting it into internal vibration or fracturing 
the bonds between its parts? Each is a guaranteed way to increase the mass of the 
system (Table 8-1)! ■om'

8.4 ENERGY WITHOUT MASS: PHOTON
light moves with zero aging, 
photons move with zero mass.

A striking example of the primacy of momenergy over mass is furnished by a 
quantum o f  light colliding with an electron.
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Quantum? A quantum of luminous energy of a given color or, in more technical 
terms, light of a given wavelength or frequency of vibration. Max Planck discovered in 
1900 that light of a given color comes only in quanta— “hunks” —  of energy of a 
standard amount, an amount completely determined by the color (Table 8-2). We can 
have one quantum, one hunk, one pho ton , of green light, or two, or fifteen, but never 
two and a half.

Nothing did more to raise the light quantum, the hunk of luminous energy, the 
photon, to the status of a particle than experiments carried out by 28-year-old Arthur 
Holly Compton at Washington University, St. Louis, in 1920. Shining X-rays of 
known wavelength (and hence of known frequency and known quantum energy) on a 
variety of different substances, he measured the wavelength (and hence the quantum 
energy) of the emergent “scattered” X-rays. He got identical changes in wavelength at 
identical angles of observation from many kinds of materials. There was no way he 
could explain this result except to say that the scattering object was in every case the 
same, an electron, whatever the atom in which the electron happened to reside.

But why did the change of wavelength have a unique value, the same for all 
materials at a given angle of scattering? Every idea of classical physics failed to fit, 
Compton found. “Compton arrived at his revolutionary quantum theory for the 
scattering process rather suddenly in late 1922,” a biographer tells us. “He now 
treated the interaction as a simple collision between [an X-ray quantum} and a free 
electron . . . {He} found that [this hypothesis gave results} which agreed perfectly 
with his data . ..  When Compton reported his discovery at meetings of the American 
Physical Society, it aroused great interest and strong opposition . . .” By 1927, 
however, his finding was generally accepted and in that year won him the Nobel Prize.

What does it mean to treat a photon on the same footing as a particle? It means this: 
attribution to the photon of an energy and a momentum, in other words momenergy.

Compton demonstrates quantum 
of radiation — photoni

MOMENTUM AND ENERGY CARRIED BY ONE PHOTON, ONE QUANTUM, 
ONE HUNK OF LUMINOUS ENERGY OF VARIOUS “ COLORS"

(Unit of energy used in this table: electron-volt or eV, the amount of energy given 
to an electron by accelerating it through an electrical potential difference of one volt)

Source of 
electromagnetic 

radiation

Momentum (and 
energy) of a 

single quantum

Frequency in 
vibrations 
per second

Wavelength 
in meters

KDKA, Pittsburgh: world’s first radio broadcast station 4.22 X lO"’ eV 1.02 X 10̂ 294

A sample infrared beam 1.24 X 10-^ eV 3 X 10'2 10-“
Yellow radiation from a sodium arc lamp 2.11 eV 5.09 X lO'-* 5.90 X 10-’
Ultraviolet light from a mercury arc lamp 4.89 eV 1.18 X 10*’ 2.54 X 10-’
Ultraviolet star radiation of just barely sufficient quantum 
energy to strip a hydrogen atom of its electron

13.6 eV 3.29 X 10” 0.91 X 10-’

Each of two gamma rays given off in the mutual annihilation 
of a slow positron and a slow electron

5.11 X 10’ eV 1.23 X 10’“ 2.43 X 10-”

Each of two gamma rays given out when a neutral pi meson, 
at rest, decays

6.75 X 10’ eV 1.63 X 10” 1.84 X 10-'“

Each of two gamma rays given off in the mutual annihilation 
of a slow proton and a slow antiptoton

0.938 X 10” eV 2.27 X 10” 1.32 X 10-'’
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Photon momenergy points 
in lightlike direction

In what direction in spacetime does the photon’s arrow of momenergy point? In a 
lightlike direction, because the photon —  a quantum of light— travels with light 
speed!

When we turn from spacetime to a particular free-float frame of reference and 
observe a pulse of light at one event along its worldline and then observe it at a second 
event (Figure 8-5), we know in advance something important about the interval 
between the two events: It equals zero.

(interval)^ — (distance between two events)^ — (time between two events)^ 
=  (difference between two quantities of identical magnitude)
=  0

Photon momenergy: 
magnitude zero 

(photon mass = 0 )

A photon in a pulse of light has a momenergy arrow with a tip and a tail, like the 
momenergy vector for any other particle. Between the tip and tail there is a magnitude. 
The magnitude for the photon, however, has the value zero— zero because this arrow 
points in the same direction in spacetime as the worldline of the light pulse (Figure
8-5). For that reason its space component (momentum) and its time component 
(energy) are equal. And, of course, we express the square of this magnitude as we 
express the square of any interval, as a difference between the squared timelike and 
spacelike separations between the two ends of the arrow:

(magnitude of momenergy arrow of photon)^
=  (photon energy)^ — (photon momentum)^ 
=  (photon mass)^ =  0

In brief, the lightlike character of the arrow of photon momenergy tells us that (1) 
photon mass equals zero and (2) the magnitude of momentum, or punch-delivering 
power, of the photon is identical in value with the energy of the photon:

and

(photon energy) — (magnitude of photon momentum)

(photon mass) 0

FIGURE 8-5. W orldline o f a  pho­
ton. Note its “unit slope in space­
time. ” Insets; Unit slope of worldline 
means equal space and time separa­
tions between events on this worldline, 
hence zero interval between them — 
and zero aging for the photon. Momen- 
ergy of the same photon, also with unit 
slope, symbolizing three properties of 
the photon: it has zero mass (hence the 
bigzero as an invariant “handle"), it 
travels with light speed, and it has a 
momentum identical in magnitude 
with its energy.
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2.4 momentum

BEFORE

A A A / ^ O
O  =1 1

mass mass

SYSTEM
(before one/after!)

A F E R

O— ^
v = 1 Q  1  24/26

mass mass

FIGURE 8-6. Backscattering of a  photon by a  free electron. The wiggly arrow symbol represents a 
photon. Energy, momentum, and mass of all particles are expressed in units of electron mass. Before: The 
electron at rest has an energy equal to its mass (vertical arrow)', the photon has an energy (and a momentum) 
of 2  electron masses (angled arrow). System: Arrow of total momenergy. (What is the mass of the system?) 
After: Arrows of momenergy of knocked-on electron (labeled 1) and backscattered photon (labeled 0) after the 
encounter. Arrow of total momenergy of the system remains the same (is conserved!) during this process.

Figure 8-5 summarizes these features of the elementary quanta of visible light and 
other electromagnetic radiations. For a “handle” on the momenergy 4-vector of a 
photon —  representative of its magnitude— we choose a stylized zero, 0.

Nothing shows these revolutionary features of light to better advantage than the 
very collision process studied by Arthur Compton: the encounter between a single 
photon and a single electron. We take the electron, loosely bound though it may be in 
one or another outer orbit of an atom, as essentially free and essentially at rest— at rest 
compared to the swift motion in which it finds itself after the high-energy photon hits 
it (Figure 8-6).

To simplify all numbers, we pick for the photon energy a value typical of gamma 
rays, considerably grearer than that of the X-rays with which Compton worked but 
easily available today from various sources of radioactivity: 1.022 MeV (million 
electron-volts). We pick this number because we want to express all energies in units of 
electron mass, 9.11 X 10“ ^' kilograms or 0.511 MeV. Our choice of photon energy 
equals exactly two electron masses. Convenient!

Incoming photons of this energy, encountering an electron, are scattered by the 
electron sometimes in one direction, sometimes in another, and sometimes straight 
backward. In that most extreme of encounters —  backward scattering— an inter­
change of momentum takes place that nevertheless preserves total momentum and 
also total energy, as illustrated in Figure 8-6. The electron is kicked forward with a 
momentum of 2 .4 = 1 2 /5  times the electron mass, and the photon bounces backward 
with a momentum (and energy) of 0.4 =  2 /5  times the electron mass, much less than 
the two-electron masses of momentum (and energy) with which it approached.

Compton collision analyzed
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S A MP L E  P R O B L E M  8-2
MASS OF A SYSTEM THAT 
INCLUDES PHOTONS

m

A photon has no rest energy —  that is, no mass of 
its own. However, a photon can contribute energy 
and momentum to a system of objects. Hence the 
presence of one or more photons in a system can 
increase the mass of that system. More: A system 
consisting entirely of zero-mass photons can itself

Find system mass for each of the follow­
ing systems. The particles that make up these sys­
tems do not interact with one another. Express the 
system mass in terms of the unit mass m (or the 
unit energy E in the photons-only systems). Use 
only energy and mass in your answers: no mo-

have nonzero mass! menta or velocities.

System a

A / W V ^
(photon) (£= 3m)

m (at rest)

System b

A / V W ^
(energy = 3E)

A / V ^
(energy = E)

System c

A A / W ^
(energy = 3£) (energy = E)

System d

(energy  ̂ ^

A / V W ^
(energy = 3E)

SOLUTION
System a: System energy equals the rest energy m of the material particle plus the 
energy E = 4 m o i  the photon: E^^^^ =  m4- 5m =  4m. The momentum of the system is 
equal to the momentum of the photon, which is equal to its energy: =  4m. The 
mass of the system is reckoned from the difference of the square of energy and 
momentum:

ŝystem ~  t£systcm̂  ~  ~  \.k4mf '~ — [I6m^ —

— — 2.646m

System b: System energy equals the sum of the energies of the two photons: =
3E 4- E — 4E. System momentum equals sum of momenta of the two photons 
— which in this case also equals the sum of the energies of the two photons: =
3£ +  £ =  4£. Therefore system mass equals zero:

=  t£sv ‘̂ system •}i/2 =  [ (4 £ )2  -  (4 £ )2 ] i/ 2  =  0

We could have predicted this result immediately. Two photons moving along in step 
are, as regards momentum and energy, completely equivalent to a single photon of
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energy equal to the sum of energies of the separate photons. And a single photon has, 
of course, zero mass.

System c: Total energy =  system energy =  =  3E E =  4E. System
momentum equals the difference between the rightward momentum of the first 
particle and the leftward momentum of the second particle: =  i E ~  E =  2E.
Hence the system mass is

[16£2 -  4£^}>'2 = [12]''2£ =  3.464£

Why can’t we simply make a single photon by adding the energies of the two photons, 
as in system b? Because energies add as scalars, and momenta add as 3-vectors. In this 
case the total energy is 4£ and the total momentum is 2£. No way to make a single 
photon out of this; for a photon, energy and momentum must have equal magnitudes!

System d: This part serves as an additional reminder that momentum is a 3-vector. 
The system energy equals E^^^^ =  £ -f  3£ =  4£. The squared momentum of the 
system equals the sum of squares of the momenta of the separate particles, since they 
move in perpendicular directions in this frame: ~  EP (3£)^ =  10£^.

Hence system mass is:

=  [16£2 10£ 2}‘/2 =  [ 6}*/2£  =  2.449£

8.5 PHOTON USED TO CREATE MASS
photon hits electron, creates electron —positron 
pair

It should not be surprising that a photon can deliver energy without having any mass 
of its own. After all, an electron does have mass of its own; yet an electron traveling 
sufficiently close to light speed can impart to its target an amount of energy ten, a 
hundred, or a thousand times as great as its own mass. Not mass but momentum 
governs the size of punch that either photon or electron can deliver.

Incredibly, however, a photon in the presence of an electron can create matter out of 
empty space. To bring about this process, double the energy of the quantum of radiant 
energy shown in Figure 8-6. When a photon with energy equal to four electron masses 
hits an electron at rest, the photon most often recoils; in other words, it suffers 
backward scattering, an instance of the Compton process. Occasionally, however, the 
impacting photon produces out of empty space, near the struck electron, a new pair of 
electrons, one with a negative electric charge like all everyday electrons, the other with 
an identical amount of positive charge. The electron with positive charge has rhe name 
positron  (Box 8-1).

This process goes on all rhe rime high in Earrh’s atmosphere, where cosmic rays pour 
in from outer space. There, however, energies of cosmic-ray photons often far exceed 
four electron masses. In consequence, the struck electron and the two newly created 
electrons go off in slightly different directions and at different speeds. However, when 
the energy of rhe incoming photon is sufficiently finely tuned, in the immediate 
vicinity of an energy of four electron masses, rhe three particles can stick together as a 
super-light molecule, a polyelectron, a system analogous to what chemists call the 
hydrogen molecule ion (Figure 8-7).

M atter is born

o.
FIGURE 8-7. Comparison a n d  contrast. 
Left: Two protons and an electron forming the 
hydrogen molecule ion of chemistry. (A proton is 
much more massive than an electron but can be 
envisioned as occupying less volume.) Right: 
Two electrons and a positron, forming a polye­
lectron created by impact of a properly tuned 
photon {about 2  lAeV of energy) on an electron at
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BEFORE AFTER

O  A A A / ^
1

3
mass ■ Q

^=4/5

FIGURE 8-8. Conservation of energy a n d  momentum in the process o f creating a  p a ir  {a positive 
a n d  a  negative electron) in the field  o fan  electron. Before: A photon that has energy {and momentum) 
equal to four electron masses (sloping arrow) strikes an electron essentially at rest (vertical arrow). After: 
The photon has ceased to exist, and the two newly created particles have gone off in company with the original 
electron at 8 0  percent of light speed— a combined “particle” of three electron masses.

System momentum means 
not all system energy available  

to create particles

Why does it take a light quantum with an energy of four electron masses to create 
(Figure 8-8) a polyelectron, a super-light hydrogen molecule ion, an object with a 
mass of three electron masses (in truth, a tiny bit less than three elearon masses 
because of the negative binding energy among the three particles)? The question 
becomes all the more insistent when we recall that the electron that got hit already 
brought to the consummation of the deal a rest energy equal to one electron mass.

In brief, why do we have to put in five electron masses of energy to get out a 
three-electron-mass product? Simply asking this question points out where the expla­
nation lies. The incident photon brings in a great momentum, and the electron with 
which it reacts has no momentum. So all that momentum has to go into the output 
product, the polyelectron. Since the polyelectron must have momentum, it must also 
have kinetic energy — energy not available for creating additional mass. In conse­
quence, that object has so much energy of motion that only a much diminished part of 
the energy of the incident photon is available for the creation process itself.

Any energetic particle can create 
other particles

8.6 MATERIAL PARTICLE USED TO 
CREATE MASS

proton hits proton, creates proton-antiproton 
pair

Particles other than the photon can also create particles. A particle of any type can carry 
enough energy to create particles similar to or different from itself Each such creation 
must not only follow momenergy conservation laws of special relativity, but it is also 
subject to the law of conservation of total electric charge and other conservation laws, 
as described in elementary particle physics.
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BACKYARD ZOO OF PARTICLES
This is not a textbook of particle physics, but our examples include interac­
tions between common particles. Here are brief descriptions of some of 
them.

Electron
Electrons form the outer structure of every atom and rattle around in approx­
imately 99.99999999999 percent of its volume. The mass of the electrons of 
an atom, however, accounts for only about one two-thousandth of its mass or 
less. The electron carries a negative “elementary” electrical charge. Every 
accepted theory of particle physics treats the electron itself as an elementary 
particle —  it is not made up of anything more fundamental. The positron is the 
antiparticle of the electron, with the same mass but a  positive elementary 
charge. When positron and electron meet, sooner or later they mutually 
annihilate, yielding two or more high-energy photons (gamma rays). This will 
be the fate of the positron and one of the electrons in the polyelectron 
discussed in Section 8.5 soon after they begin to orbit one another.

Proton
The proton (Greek for “the first one”) is, with the neutron, the most massive 
constituent of atomic nuclei. The simplest atom, hydrogen, in its most abun­
dant form has a single proton as nucleus. The proton has a  positive charge 
equal in magnitude to that of the electron, but a mass almost two thousand 
times as great as that of the electron. As far as we know the proton is stable,- 
experiments have shown its lifetime to be greater than 10 '̂ years —  very 
much longer than the current age of th  ̂universe (about 10 ’° years). Particle 
physicists postulate that protons (and neutrons) are composed of still-more­
elementary particles called quarks. The antiproton, antiparticle of the pro­
ton, has mass equal to that of the proton but negative unit charge. When it 
encounters a proton, the two particles annihilate, sometimes creating gamma 
rays but more often other particles not listed in this box.

Neutron
The neutron (from Latin neuter—  “ neither” ; neither positively nor negatively 
charged) is similar to the proton but has no charge and has slightly greater 
mass. It is a constituent of all nuclei except for the most abundant form of 
elementary hydrogen. When not in a nucleus, the neutron decays into a 
proton, electron, and neutrino with half-life of about 10 minutes.

Photon
The photon, the quantum of light, has zero mass. Its properties are described 
in Section 8.4.

Neutrino
There are several kinds of neutrinos, all of which appear to have zero mass 
and to move at light speed. The neutrino (Italian for “ little neutral one”) has 
no charge and interacts only weakly with ordinary matter: Neutrinos of 
certain energies can pass through a block of lead one light-year thick with 
only a 5 0 -5 0  chance of being absorbed! An immense flux of neutrinos 
passes continually through our bodies without injuring us. “Ten million trillion 
[10” ] neutrinos will speed harmlessly through your brain and body in the 
time it takes to read this sentence. By the time you have read this sentence, 
they will be farther away than the moon.”



2 3 6  CHAPTER 8 COLLIDE. CREATE. ANNIHILATE.

BEFORE AFTER
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mass

(48)1/2
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FIGURE 8-9. Conservation o f energy a n d  momentum in  the process o f creation o f a  proton -  
antiproton p a ir  by the impact of a  proton on another proton. Before; The incoming proton (sloping 
arrow) moves with a  speed (48)'/^ f l  =  9 9  percent that of light. The target proton initially stands a t rest 
(vertical arrow). After; The resulting three protons and one antiproton are kicked to the right a t (48)'!^ j 8  
=  8 1  percent of light speed.

Threshold energy defined

‘Efficiency” of particle production

Figure 8-9 shows “the creation of a proton-antiproton pair by a proton in the 
presence of another proton.” The antiproton has mass equal to that of the proton but 
carries a negative unit charge (Box 8-1). The interaction shown leaves all four resulting 
particles moving along together. The resulting particles stay together when the incom­
ing particle has the lowest energy that can create the additional pair. This minimum 
energy is called the th resho ld  energy. We don’t want the four particles to move 
apart after the creation. If they did, we would have to supply the incoming particle 
with additional kinetic energy. It would have to carry an energy greater than the 
threshold energy. We discuss here the threshold energy of the incoming proton.

Magnitudes of the momenergy vectors displayed in Figure 8-9 are expressed in 
“natural units” for the proton, namely the mass of the proton itself, 1.67 X 10“ ^̂  
kilograms or 938.27 MeV. This time the numbers are not all integers; the momentum 
of the system has a value equal to the square root of 48, or 6.928 proton masses.

The creation of a proton-andproton pair by a PROTON requires a total of eight 
proton units of energy to create two proton units of mass. In contrast the creation of an 
electron-antielectron pair by a PHOTON requires a total of only four electron units 
of energy to create two electron units of mass. Why is the photon process so much more 
efficient (in units of mass of the struck particle) than the proton process? Answer; The 
photon is annihilated in the creation process. In contrast, the incoming proton is not 
annihilated; the bookkeeper must keep the incoming proton on the payroll, providing 
momenergy after rhe collision to keep the proton in step with the other three particles. 
This after-collision momenergy of the proton is not available to be applied to other 
products of the collision. Therefore a proton of given total energy can create less mass 
than a photon of the same energy when each strikes a stationary target,



8 .7 CONVERTING MASS TO USABLE 
ENERGY: FISSION, FUSION, ANNIHILATION

fission and fusion both slide down the energy 
hill toward the minimum, iron, electron and 
positron annihilate to yield two energetic 
photons.

For a final perspective on the evanescence of mass and the preservation of momenergy, 
turn from processes where mass is created to three processes in which mass is destroyed: 
fission, fusion, and annihilation.

Anyone who first hears about the splitting of a nucleus (fission) as a source of 
energy, and the joining of two nuclei (fusion) also as a source of energy might gain the 
mistaken impression that a perpetual motion machine has been invented. Could we 
split and join the same nucleus over and over again, each time releasing energy? No.
Here’s why. Fission occurs in the splitting of uranium, for instance when a neutron 
strikes a uranium nucleus:
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on l^Rh +  i^iCs

In this equation the lower-left subscript tells the number of protons in the given 
nucleus and the upper-left superscript shows number of protons plus neutrons in the 
nucleus. The process described by this equation rearranges the 236 nucleons, that is, 
92 protons plus 144 neutrons, into a configuration that comes a bit closer to that most 
stable of all available nuclear configurations, the iron nucleus:

Fission and fusion; Both go from 
looser to tighter binding

iiFe

But fusion too, for example the process of uniting two rather light nuclei such as 
“heavy hydrogen” or deuterons to form a helium nucleus.

\D  +  \D ^He

can also be regarded as one step along the way toward rearranging nucleons (protons 
and neutrons) to achieve the iron configuration or something like it.

In brief, we can get energy out of nucleon rearrangement processes that move from 
looser binding of borh heavier and lighter nuclei roward tighrer binding of the 
(intermediate-mass) iron nucleus (Figure 8-10). In neither fission nor fusion, how­
ever, is the fraction of mass converted into energy as great as one percent. (For an 
example of fusion reacrion in Sun, see Sample Problem 8-5, especially c.)

A nnihilation is interesting because it can convert 100 percent of matter into 
radiation. Annihilation is interesting, too, because it has been demonstrated on the 
microscopic scale. A slow positive electron, a positron, joining up by chance to orbit 
with an everyday negarive electron, evenrually unites with it to annihilate them both 
and produce sometimes two, sometimes three lighr quanta (photons —  called 
gam m a rays in the case of these high energies):

Annihilation converts 100% 
of matter into radiation

e*' e —̂  2 or 3 photons

Figure 8-11 displays rhe balance of energy and momentum in the two-quantum 
annihilation process.
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o
S

Mass number of the nucleus 
(not a linear scale)

FIGURE 8-10. Both the conversion of deute­
rium to the more massive helium in fusion and 
the conversion of uranium to lighter nuclei in 
fission decrease the mass per nucleon, both 
toward the most stable of nuclei, iron.

Why 2 or 3 photons? Why can't just a single photon be emitted in this process?

'  Brief answer: Conservation of momentum. Fuller answer: Look at Figure 8-11. 
Before annihilation, the system has zero total momentum. A single photon remain­
ing after the annihilation could not have zero momentum, no matter in which 
direction it moved! The presence of a single photon after the collision could not 
satisfy conservation of momentum. So annihilation never does and never can end up 
giving only a single photon.

A
1 energy, 11

mass momentum, 0
1 [sum]

1 energy, 1 i \  0  j 0
—vmass • mass ,̂—

mass momentum, 0 1 enWgy j T Q J  1 energy

-1  momentum 1 momentum

BEFORE AFTER
1 0  0mass mass mass

1 ) ^ < W V \ A  A / W V > -
) 1 v = 1 v=  1

_Meiî  mass

FIGURE 8-11 . Momenergy conservation in the two-photon electron-pmsitron annihilation pro-
cess. Before'. Before annihilation each oppositely charged particle has rest energy and no momentum. After: 
The two particles have annihilated, creating two high-energy photons (gamma rays). The two photons fly 
apart in opposite directions; total momentum remains zero.



CONVERTING MASS TO USABLE ENERGY: FISSION, FUSION, ANNIHILATION 2 3 9

ANALYZING A PARTICLE ENCOUNTER

Conservation of total momenergy! In any given free-float frame that means 
conservation of total energy and conservation of each of three components 
of total momentum. In no way does the power and scope of this principle 
make itself felt more memorably than the analysis of simple encounters of 
this, that, and the other kind in an isolated system of particles. “Analyzing an 
encounter” means using conservation laws and other relations to find un­
known masses, energies, and momenta of particles in terms of known quanti­
ties. Sometimes a complete analysis is not possible; the information provided 
may be insufficient. Here are suggested steps in analyzing an encounter. 
Sample Problems 8-3 and 8-4 illustrate these methods.

1. Draw a diagram of particles before and particles a fte r  the interaction. 
Label particles entering with numbers or letters and particles leaving with 
different numbers or letters (even if they are the same particles). Use 
arrows to show particle directions of motion and label with symbols their 
masses, energies, and momenta, whether initially known or unknown.

2. Write down algebraically the conservation of total energy. Do not forget 
to include the rest energy —  the mass m —  of any particle not moving in 
the chosen free-fioat frame.

3. Write down algebraically the conservation of total momentum. Do not 
forget that momentum is a vector. In general this means demanding con­
servation of each of three components of total momentum.

4. Try to solve for unknowns in terms of knowns, still using symbols.

a. Make liberal use of the relation m^ =  — p̂ , where p̂  = p„̂  + p̂  ̂+
p̂ .̂ For a photon or neutrino, mass equals zero and £ = p (in magni­
tude: Pay attention to the direction of the momentum vector p —  or its 
sign if motion is in one space dimension).

b. Do NOT use speed v of a particle unless forced to by requirements of 
the problem. Relativistic particles typically move with speeds very 
close to light speed, so speed proves to be a poor measure of signifi­
cance. Increase by one percent the speed of a particle moving at v =  
0.99 and you increase its energy by a factor of almost 10.

c. Substitute numerical values into resulting equations as late as possible. 
Before substituting numerical values, check that all values are ex­
pressed in concordant units.

5. Check your result. Check units of the solution. Is the order of magnitude of 
numerical results reasonable? Substitute limiting values, for example let­
ting energy of an incoming particle become very large (and very small). Is 
the limiting-case result reasonable?

Is there any general conclusion you can draw from your specific solution? 
Does this exercise illustrate a deep principle or lead to an even more inter­
esting application of conservation laws?
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S A MP L E  P R O B L E M  8-3
SYMMETRIC  ELASTIC C O LL IS IO N
A proton of mass m and kinetic energy K in the 
laboratory frame strikes a proton initially at rest in 
that frame. The two protons undergo a symmetric 
elastic collision; the outgoing protons move in di­
rections that make equal and opposite angles 0 /2  
with the line of motion of the original incoming 
particle. Find energy and momentum of each out­
going particle and angle 0 between their outgoing 
directions of motion for rhis symmetric case.

H istorical note; When impact speed is small 
compared to the speed of light, this separation of 
directions, 0, is 90 degrees, according to Newto­
nian mechanics. Early cloud-chamber tracks 
sometimes showed symmetric collisions with 
angles of separation substantially less than 90 de­
grees, thereby giving evidence for relativistic me­
chanics and providing the first reliable measure­
ments of impact energy.

SOLUTION/ following steps in Box 8-2

1. D raw  a diagram  and label all four particles with letters:

' P c

Symmetry of this diagram implies that the two outgoing particles have equal 
energy and equal magnitude of momentum; that is, — Ej and (in magnitude) 
Pc  =  Pd-

2. Conservation o f energy: Energy of each particle equals mass plus kinetic 
energy. And the masses don’t change in this reaction. Therefore rotal kinetic 
energy after the encounter (divided equally between the two particles) equals the 
(known) total kinetic energy before the encounter, all localized on one particle. In 
brief; K^= K j— K J2  =  K /2. Simple answer to one of the three questions we 
were asked!

3. Conservation o f m om entum : By symmetry, rhe vertical components of 
momenta of the outgoing particles cancel. Horizontal components add, leading 
to the relation

A o t  P a ^  Pc  cos(0/2) - b  pj cos(0/2) =  2pj cos(0/2)

or, in brief.

p ^  — 2 p j  C O s (0 /2 ) [conservation of momentum]

4. Solve fo r the unknow n angle 0: Along the way find the other requested 
quantity, the magnitude p c~  pd of the momenta after the collision. To that end, 
first find the momentum p^ before the collision, using the general formula for the 
momentum of an individual particle:
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P =  { E ^ -  w2]V2 =  +  m y -  »?2}1/2 =  (^^2 +  2mK +  -  m^y/^
=  (K^ +  2mKy/^

Therefore
=  (K^ +  2/wK)*/2

From conservation of energy, K  ̂=  K j=  K /2. Therefore 

p , =  [{K /2y +  2m{K/2)y/^

Substitute these expressions for p^ and p j into the equation for conservation of 
momentum:

(fC2 +  2« fO '/2 =  2[(fC/2)2 +  2m(K/2)y/^cos(9/2)

Square both sides and solve for cos^(0/2) to obtain

„ K + 2 m

Now apply to this result the trigonometric identity

, _ (cos 0 + 1 )
cos2(0/2) =  ^

After some manipulation, obtain the desired result:

cos e  =
(K/m) 

(K/m) +  4

Here K is the kinetic energy of the incoming particle, m the mass of either particle, 
and 6 the angle between outgoing particles. This result assumes (1) an elastic 
collision (kinetic energy conserved), (2) one particle initially at rest, (3) equal 
masses of the two particles, and (4) the symmetry of outgoing paths shown in the 
diagram.

5a. L im iting case; Low energy. In the case of low energy (Newtonian limit), the 
incoming particle has a kinetic energy K  very much less than its rest energy m, so 
the ratio K/m  approaches zero. In the limit, cos 6 becomes zero and 9 =  90 
degrees. This is the accepted Newtonian result for low velocities (except for an 
exactly head-on collision, in which case the incoming particle stops dead and the 
struck particle moves forward with the same speed and direction as the original 
incoming particle).

5b. L im iting case: H igh energy. For extremely high-energy elastic collisions, the 
incident particle has a kinetic energy very much greater than its rest energy, so the 
ratio K/m  increases without limit. In this case the quantity 4 in the denominator 
becomes negligible compared with K/m, so numerator and denominaror both 
approach the value K/m, with the result cos 0 ^  1 and 0 - ^ 0 .  This means that 
in the special symmetric case discussed here both resulting particles go forward in 
the same direction as the incoming particle, sharing equally the kinetic energy of 
the incoming particle.

For an incoming particle of very high energy, the elastic collision described here 
is only one of several possible outcomes. Alternative processes include creation of 
new particles.



S A MP L E  P R O B L E M  8-4
ANNIH ILATIO N
A positron of mass m and kinetic energy equal to its 
mass strikes an electron at rest. They annihilate, 
creating two high-energy photons. One photon 
enters a detector placed at an angle of 90 degrees

with respect to the direction of the incident posi­
tron. What are the energies of both photons (in 
units of mass of the electron) and direction of 
motion of the second photon?

SOLUTION/ following steps in Box 8-2

1. D raw  a diagram  and label the particles with letters.

I l l

0^a/ pa

Pb = 0 
Eb = m 

m

b

Ec, Pc

Ed, Pd

BEFORE AFTER
2. C onservation o f energy expressed iî  the symbols of the diagram, and includ­

ing the rest energy of the initial stationary particle:

m '■ E .+  E,

3. Conservation o f each com ponen t o f to tal m om entum :

P x  tot Pa Pc  COS 0
Pywc =  0 = p , s i n 6 -  Pj

[horizontal momentum] 
[vertical momentum]

4. Solve; First of all, the problem states that the kinetic energy K of the incoming 
positron equals its rest energy m. Therefore its total energy E  ̂=  m-\~ K =  m-\- m 
=  2m. Second, the outgoing particles are photons, for w h i c h a n d  pj =  Ej 
in magnitude, respectively. With these substitutions, the three conservation 
equations become

E  ̂ m — 2m m 
Pa =  E, cos 6 
Ej =  sin 6

^ t n  ~  E ^  E j  [conservation of energy]
[conservation of horizontol momentum] 

[conservation of vertical momentum]

S A MP L E  P R O B L E M  8-5
C O N V E R S I O N  OF MASS TO 
EN ERGY IN SUN
Luminous energy from Sun pours down on the 
outer atmosphere of Earth at a rate of 1372 watts 
per square meter of area that lies perpendicular to 
the direction of this radiation. The figure 1372 
watts per square meter has the name solar con­

stant. The radius of Earth equals approximately 
6.4 X 10^ meters and the Earth-Sun distance 
equals 1.5 X 10“  meters. The mass of Sun is 
approximately 2.0 X 10^° kilograms.
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These are three equations in three unknowns and £^and 6. Square both sides of 
the second and third equations, add them, and use a trigonometric identity to get 
rid of the angle 9:

p j  +  E /  =  £/(cos^ 6 +  sin  ̂ 9) =  E /

Substitute p /  =  E /  — nE on the left side of this equation and again use E  ̂=  2m 
to obtain a first expression for £ /:

E^ =  E ^ — rrp- E /  =  ArtE — rrp- E /  =  ^np- +  £ /

Now solve the equation of conservation of enetgy for Ê  and square it to obtain a 
second expression for £ /;

£ /  =  {5m -  EjY =  9m^ -  6mEj +  £ /

Equate these two expressions for E /  and subtract E /  from borh sides to obtain

5rrP =  9m^ — 6mEj

Solve for unknown Ej.

9nP — 5nP 6m^
Ej = ----------------------------m

Gm Gm

This yields our first unknown. Use this result and conservation of energy to find 
an expression for E/.

Ê  =  5m — Ej =  5m — m =  2m

Finally, angle 9  comes from conservation of vertical momentum. For a photon p  
=  £, so

sin 9 '
£  ̂ 2m 2

from which 9 — 50 degrees. We have now solved for all unknowns: £„ — 2m, 
Ej =  m, and 9  =  50 degrees.

5. L im iting cases: There is no limiting case here, since the energy of the incoming 
positron is specified fully in terms of the mass m. common to electron and positron.

a. How much mass is converted to energy every second in Sun to supply the 
luminous energy that falls on Earth?

b. What total mass is convened to energy every second in Sun to supply luminous 
energy?

c. Most of Sun’s energy comes from burning hydrogen nuclei (mostly protons) into 
helium nuclei (mostly a two-proton -  two-neutron combination). Mass of the 
proton equals 1.67262 X 10“ ^̂  kilogram, while the mass of a helium nucleus of 
this kind equals 6.64648 X 10“ ^̂  kilogram. How many metric tons of hydrogen
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must Sun convert to helium every second to supply its luminous output? (One 
metric ton is equal to 1000 kilograms, or 2200 pounds.)

d. Estimate how long Sun will continue to warm Earth, neglecting all other processes 
in Sun and emissions from Sun.

SOLUTION
a. One watt equals one joule per second =  one kilogram meter^/second^. We want 

to measure energy in units of mass— in kilograms. Do this by dividing the 
number of joules by the square of the speed of light (Section 7.5 and Table 7-1):

1372 joules _  1.372 X 10  ̂ kilogram metersVsecond^

9.00 X 10̂® meterŝ /second̂
=  1.524 X 10“ ''' kilograms

Thus every second 1.524 X 10“ *'' kilogram of luminous energy falls on each 
square meter perpendicular to Sun’s rays. The following calculations are based on 
a simplified model of Sun (see last paragraph of this solution). Therefore we use 
the approximate value 1.5 X 10“ *'' kilogram per second and two-digit accuracy.

What total luminous energy falls on Earth per second? It equals the solar 
constant (in kilograms per square meter per second) times some area (in square 
meters). But what area? Think of a huge movie screen lying behind Earth and 
perpendicular to Sun’s rays (see the figure). The shadow of Earth on this screen 
forms a circle of radius equal to the radius of Earth. This shadow represents the 
zone of radiation removed from that flowing outward from Sun. Call the area of 
this circle the cross-sectional area A  of Earth. Earth’s radius r=  6.4 X 10^ meters, 
so the cross-sectional area A  seen by incoming Sunlight equals A  =  =  1.3 X
10*'' meters^. Hence a total luminous energy equal to (1.5 X 10“ *'' kilograms/ 
meter^) X (1.3 X 10*'' meters^) =  2.0 kilograms fall on Earth every second. This 
equals the mass converted every second in Sun to supply the light incident on 
Earth.

light from Sun

8.8 SUMMARY
mass: the magnitude off the 4-vector called 
momenergy

Mass can be converted into energy and energy can be converted into mass” —  this is a 
loose and sometimes misleading way to summarize some consequences of the two
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b. Assume that Sun delivers sunlight at the same ‘ ‘solar-constant rate” to every part 
of a sphere surrounding Sun of radius equal to the Earth -  Sun distance. The area 
of this large sphere has the value 471/?̂  where i? =  1.5 X 10“  meters, the average 
distance of Earth from Sun. This area equals 2.8 X 10^  ̂meters^. Therefore Sun 
converts a total of 2.8X10^^ meters^ X 1.5 X 10“  kilograms/meter^ (from a) 
=  4.2 X 10^ kilograms of mass into luminous energy every second, or about 4 
million metric tons per second.

c. Through a series of nuclear processes not described here, four protons transform 
into a helium nucleus consisting of two protons and two neutrons. The four 
original protons have a mass 4 X 1.67262 X 10“ ^̂  =  6.69048 X 10“ ^̂  
kilogram. The helium nucleus has a mass 6.64648 X 10~^^ kilogram. The 
difference, 0.04400 X 10"^^ kilogram, comes out mostly as light. (We cannot 
use two-digit accuracy here, because the important result is a difference between 
nearly equal numbers.)

The ratio of hydrogen burned to mass converted equals 6.69048/0.04400 =  
150 (back to two-digit accuracy!). So for each kilogram of mass converted to 
electromagnetic radiation, 150 kilograms of hydrogen burn to helium. In other 
words, about 0.7 percent of the rest energy (mass) of the original hydrogen is 
converted into radiation. Hence in order to convert 4.2 X 10^ kilograms per 
second into radiation. Sun burns 150X 4.2x10^  kilograms per second =  6.3 X 
10“  kilograms of hydrogen into helium per second —  about 630 million metric 
tons each second.

d. We can reckon Sun’s mass by figuring how much Sun gravity it takes to guide our 
planet around in an orbit of 8 light-minute radius and one year time of circuit. 
Result: about 2.0 X 10^° kilograms. If Sun were all hydrogen, then the process of 
burning to helium at the present rate of 6.3 X 10“  kilograms every second would 
take (2.0 X 10̂ ® kilograms)/(6.3 X 10“  kilograms/second) =  3.2 X 10'® 
seconds. At 32 million seconds per year, this would last about 10“  years, or 100 
billion years.

O f course the evolution of a star is more complicated than the simple conver­
sion of hydrogen into helium-plus-radiation. Other nuclear reactions fuse helium 
into more massive nuclei on the way to the most stable nucleus, iron-5 6 (Section 
8.7). These other reactions occur at higher temperatures and typically proceed at 
faster rates than the hydrogen-to-helium process. Sun emits a flood of neutrinos 
(invisible; detected with elaborate apparatus; amount presently uncertain by a 
factor of 2, carry away less than 1 percent of Sun’s output). Sun also loses mass as 
particles blown away from the surface, called the solar w ind. And stars do not 
convert all their hydrogen to helium and other nuclei —  or live for 100 billion 
years. According to current theory, the lifetime of a star like Sun equals approxi­
mately 10 billion years ( lO'" years). We believe Sun to be 4 to 5 billion years old. 
The remaining 6 billion years (6 X 10^ years) or so should be sufficient time for 
our descendants to place themselves in the warmth of nearby stars.

principles that ate basic and really accurate: (1) The total momenergy of an isolated 
system of particles remains unchanged in a reaction; (2) The invariant magnitude of 
the momenergy of any given particle equals the mass of that particle.

How much sound infotmation about physics can be extracted from these basic 
principles? What troubles sometimes atise from accepting a too loose formulation of 
the ‘‘principle of equivalence of mass and energy”? Some answers to these questions 
appeat in the dialog that follows, which serves also as a summary of this chaptet.
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Does an isolated system have the same mass as 
observed in every inertial (free-float) reference 
frame?

Does its energy have the same value in every inertial 
frame?

Yes. Given in terms of energy E and momentum p 
by ■— in one frame, by rrp- =  {E'Y
(p 'Y  in another frame. Mass of an isolated system is 
thus an invariant.

No. Enetgy is given by E =  {nY +  or 

E =  m /{\ —

or

Does energy equal zero for an object of zeto mass, 
such as a photon or neutrino or graviton?

Can a photon —  that has no mass— give mass to an 
absorber?

Invariance of mass; Is that feature of nature the same 
as the principle that all electrons in the universe have 
the same mass?

Invariance of mass: Is that the same idea as the 
conservation of the momenergy of an isolated sys­
tem?

E — (mass) +  (kinetic energy) =  m-\- K

Value depends on the frame of reference from which 
the patticle (or isolated system of particles) is ob­
served. Value is lowest in the frame of reference in 
which the particle (ot system) has zero momenmm 
(zero total momentum in the case of an isolated 
system of particles). In that frame, and in that frame 
only, energy equals mass.

No. Energy has value £ =  (0^ +  pYY^^ =  p  (or in 
conventional units =  cp̂ oaY- Alternatively one 
can say— formally— that the entire energy resides 
in the fotm of kinetic energy {K =  p in this special 
case of zero mass), none at all in the form of rest 
energy. Thus,

£  =  (mass) +  (kinetic energy) =  ^  K =  K =  p 

(case of zero mass only!).

Yes. Light with energy £  transfers mass m =  Eiy= 
Econv/^) to a heavy absorber (Exercise 8.5).

No. It is tme that all elementary particles of the 
same kind have the same mass. However, that is a 
fact totally distinct from the principle that the mass 
of an isolated system has identical value in whatever 
free-float frame it is figured (invariance of system 
mass).

No. Conservation of momenergy— the principle 
valid for an isolated system —  says that the momen- 
ergy 4-vector figured before the constiments of a 
system have interacted is identical to the momen­
ergy 4-vector figured after the constituents have 
intetacted. In contrast, invariance of mass —  the 
magnitude of the momenergy 4-vector— says that 
that mass is the same in whatever free-float frame it 
is figured.
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Momenergy: Is that a richer concept than mass?

Conservation of the momenergy of an isolated sys­
tem: Does this imply that collisions and interactions 
within an isolated system cannot change the sys­
tem’s mass?

Conservation of the momenergy of an isolated sys­
tem: Does this say that the constituents that enter a 
collision are necessarily the same in individual mass 
and in number as the constituents that leave that 
collision?

Yes. Momenergy 4-vector reveals mass and more: 
the motion of object or system with the mass

Yes. Mass of an isolated system, being the magni­
tude of its momenergy 4-vector, can never change 
(as long as the system remains isolated).

No! The constituents often change in a high-speed 
encounter.
Exam ple 1: Collision of two balls of putty that 
stick together— after collision hotter and therefore 
very slightly more massive than before.
Exam ple 2: Collision of two electrons (e~) with 
sufficient violence to create additional mass, a pair 
consisting of one ordinary electron and one positive 
electron (positron: e'̂ ):

e (fast) +  e (at rest) +  3e-.

Can I figure the mass of an isolated system composed 
of a number, n, of freely-moving objects by simply 
adding the masses of the individual objects? Exam­
ple: Collection of fast-moving molecules.

Exam ple 3: Collision that radiates one or more 
photons:

e”  (fast) +  e~ (at rest) ~

( electrons of \  
intermediate 1 -b 

speed /

 ̂ electromagnetic \  
energy (photons) | 

emitted in the I 
\  collision process /

In all three examples the system momenergy and 
system mass are each the same before as after.

Ordinarily NO, but yes in one very special case: Two 
noninteracting objects move freely and in step, side 
by side. Then the mass of the system does equal the 
sum of the two individual masses. In the general 
case, where the system parts are moving relative to 
each other, the relation between system mass and 
mass of parts is not additive. The length, in the sense 
of interval, of the 4-vector of total momenergy is not 
equal to the sum of the lengths of the individual 
momenergy 4-vectors, and for a simple reason: In 
the general case those vectors do not point in the 
same spacetime direction. Energy however, does add 
and momentum does add:

ŝystem and P x, system P x ,i
i = 1 i = 1

From these sums the mass of the system can be 
evaluated:

M 2 =  P 2 _  * 2  —  / )2 —  * 2
 ̂ system system r  x, system r  y, system r  z, system

Can we simplify this expression for the mass of an 
isolated system composed of freely moving objects 
when we observe it from a free-float frame so chosen 
as to make the total momentum be zero?

Yes. In this case the mass of the system has a value 
given by the sum of energies of individual particles:

M — Fsystem '^system
[in zero-total 

momentum frame]
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Moreover, rhe energy of each particle can always be 
expressed as sum of rest energy m plus kinetic energy 
K:

Ei =  nii-\- K: a  =  1 ,2 ,3 , , «)

W hat’s the meaning of mass for a system in which 
the particles interact as well as move?

How do we find out the mass of a system of particles 
(Table 8-1) that are held —  or stick —  together?

Does mass measure “amount of matter’’?

Does the explosion in space of a 20-megaton hydro­
gen bomb convert 0.93 kilogram of mass into en­
ergy (fusion, Section 8.7)? conv/̂  ̂ “
(20 X 10^ tons TNT) X (10^ grams/ton) X (10^ 
calories/gram of “TNT equivalent’’) X  (4.18 
joules/calorie)/c^ =  (8.36 X 10*  ̂ joules)/(9 X 
10̂ ® meters^/second^) =  0.93 kilogram}

So the mass of the system exceeds the sum of the 
masses of its individual particles by an amount equal 
to the total kinetic energy of all particles (but only as 
observed in the frame in which total momentum 
equals zero);

= + [in zero-total 
momentum fromel

1= 1

For slow particles (Newtonian low-velocity limit) 
the kinetic energy term is negligible compared to the 
mass term. So it is natural that for years many 
thought that the mass of a system is the sum of the 
masses of its parts. However, such a belief leads to 
incorrect results at high velocities and is wrong as a 
matter of principle at all velocities.

The energies of interaction have to be taken into 
account. They therefore contribute to the total en­
ergy, fisystem, that gives the mass

M =  (E^ ̂ ^system '•'-'system ■ )l/2r  system/

Weigh it! Weigh it by conventional means if we are 
here on Earth and the system is small enough, other­
wise by determining its gravitational pull on a satel­
lite in free-float orbit about it.

Nature does not offer us any such concept as 
“amount of mattet. ’ ’ History has struck down every 
proposal to define such a term. Even if we could 
count number of atoms or by any other counting 
method try to evaluate amount of matter, that 
number would not equal mass. First, mass of the 
specimen changes with its temperature. Second, 
atoms tightly bonded in a solid weigh less —  are less 
massive —  than the same atoms free. Third, many 
of nature’s atoms undergo radioactive decay, with 
still greater changes of mass. Moreover, around us 
occasionally, and continually in stars, the number of 
atoms and number of particles themselves undergo 
change. How then speak honestly? Mass, yes; 
“amount of matter,’’ no.

Yes and no! The question needs to be stated more 
carefully. Mass of the system of expanding gases, 
fragments, and tadiation has the same value imme­
diately after explosion as before; mass M  of the 
system has not changed. However, hydrogen has 
been transmuted to helium and other nuclear trans­
formations have taken place. In consequence the 
makeup of mass of the system
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= + K (in zero-total 
momentum frame]

The mass of the products of a nuclear fission explo­
sion (Section 8.7: fragments of split nuclei of ura­
nium, for example) —  contained in an underground 
cavity, allowed to cool, collected, and weighed —  is 
this mass less than the mass of the original nuclear 
device?

has changed. The first term on the right— sum of 
masses of individual constituents —  has decreased 
by 0.93 kilogram:

2  ) ~  ( 2  kilogram

The second term— sum of kinetic energies, includ­
ing “kinetic energy’’ of photons and neutrinos 
produced —  has increased by the same amount:

2 )  ) “  ( 2  kilogram
/■ =  1 /  after \  i =  1 /  before

The first term on the right side of this equation —  
the original heat content of the bomb —  is practi­
cally zero by comparison with 0.93 kilogram.
Thus part of the mass of constituents has been con­
verted into energy; but the mass of the system has not 
changed.

Yes! The key point is the waiting period, which 
allows heat and radiation to flow away until trans­
muted materials have practically the same heat con­
tent as that of original bomb. In the expression for 
the mass of the system

M.system = 2 [in zero-total 
momentum frame]

the second term on the right, the kinetic energy of 
thermal agitation —  whose value rose suddenly at 
the time of explosion but dropped during the cool­
ing period —  has undergone no net alteration as a 
consequence of the explosion followed by cooling.

In contrast, the sum of masses

has undergone a permanent decrease, and with it the 
mass M  of what one weighs (after the cooling period) 
has dropped (see the figure).

Em;
sum of masses 

of individual particles
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Does Einstein’s statement that mass and energy are 
equivalent mean that energy is the same as mass?

Then what is the meaning of Einstein’s statement 
that mass and energy are equivalenr?

No. Value of energy depends on the free-float frame 
of reference from which the particle (or isolated 
system of particles) is regarded. In contrast, value of 
mass is independent of inertial frame. Energy is only 
the time component of a momenergy 4-vector, 
whereas mass measures entire magnitude of that 
4-vector. The time component gives the magnitude 
of the momenergy 4-vector only in the special case in 
which that 4-vector has no space component; that is, 
in a frame in which the momentum of the particle 
(or the total momentum of an isolated system of 
particles) equals zero. Only as measured in this spe­
cial zero-m om entum  frame does energy have the 
same value as mass.

Einstein’s statement refers ro the reference frame in 
which the particle is at rest, so that it has zero 
momenmm p  and zero kinetic energy K. Then E =  
m-\- K -* m -{ -0 .ln  that case the energy is called rhe 
rest energy of the particle:

In this expression, recall, the energy is measured in 
units of mass, for example kilograms. Multiply by 
the conversion factor to express energy in conven- 
rional units, for example joules (Table 7-1). The 
result is Einstein’s famous equation:

Without delving into all fine points of legalistic 
phraseology, how significant is the conversion factor 

in the equation =  mc^}

If the factor is not the central feature of the 
relationship between mass and energy, what is cen­
tral?

Is the mass of a moving object greater than the mass 
of the same object at rest?

Really? Isn’t the mass, M, of a system of freely 
moving particles given, not by the sum of the masses 
W; of the individual constiments, but by the sum of

p =  ffKp'

Many treatments of relativity fail to use the sub­
script “rest’ ’ —  needed to remind us that this equiv­
alence of mass and energy refers only to the rest 
energy of the particle (for a system, the total energy 
in the zero-total-momentum frame).

The conversion factor c ,̂ like the factor of conver­
sion from seconds to meters or miles to feet (Box
3-2), today counts as a detail of convention, rather 
rhan as a deep new principle.

The distinction between mass and energy is this: 
Mass is the magnitude of the momenergy 4-vector 
and energy is the time component of the same 4-vec­
tor. Any feature of any discussion that emphasizes 
this contrast is an aid to understanding. Any slurring 
of terminology thar obscures rhis distinction is a 
potential source of error or confusion.

No. It is the same whether the object is at rest or in 
motion; the same in all frames.

Ouch! The concept of “relativistic mass” is subject 
to misunderstanding. That’s why we don’t use it. 
First, it applies the name mass— belonging to the
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energies £,■ (hut only in a frame in which total mo­
mentum of the system equals zero)? Then why not give 

a new name and call it “relativistic mass’’ of the 
individual particle? Why not adopt the notation

«, rel =  E; =  m; +  K, ?

With this notation, can’t one then write

[in zero-total 
momentum frame]

magnimde of a 4-vector— to a very different con­
cept, the time component of a 4-vector. Second, it 
makes increase of energy of an object with velocity or 
momentum appear to be connected with some 
change in internal strucmre of the object. In reality, 
the increase of energy with velocity originates not in 
the object but in the geometric properties of space- 
time itself.

i  =  1

In order to make this point clear, should we call 
invariant mass of a particle its “rest mass’’?

Can any simple diagram illustrate this contrast be­
tween mass and energy?

That is what we called it in the first edition of this 
book. But a thoughtful student pointed out that the 
phrase “rest mass’’ is also subject to misunderstand­
ing; What happens to the “rest mass’’ of a particle 
when the particle moves? In reality mass is mass is 
mass. Mass has the same value in all frames, is 
invariant, no matter how the particle moves. {Gali­
leo: “In questions of science the authority of a thou­
sand is not worth the humble reasoning of a single 
individual.’’}

Yes. The figure shows the momentum-energy 4- 
vector of the same particle as measured in three 
different frames. Energy differs from frame to 
frame. Momentum differs from frame to frame. 
Mass (magnitude of 4-vector, represented by the 
length of handles on the arrows) has the same value, 
m =  8, in all frames.

particle 
at rest:
p  = 0

8
mass

£=8

LABORATORY
FRAME

p '  =  - 6

3 \ \ \ £ ' = 1 0  
mass

ROCKET
FRAME

SUPER-ROCKET
FRAME
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You now have at your disposal the power of special 
relativity to provide physical insight and accurate pre­
dictions about an immense range of phenomena, 
from nucleus to galaxy. The following exercises give 
only a hint of this range. Even so, there are too many 
to carry out as a single assignment or even several 
assignments. For this reason —  and to anchor your 
understanding of relativity— we recommend that

you continue to enjoy these exercises as your study 
moves on to other subjects. The following table of 
contents is intended to help organize this ongoing 
attention.

R em inder: In these exercises the symbol v  (in 
other texts sometimes called f i )  stands for speed as a 
fraction of the speed of light c. Let be the speed in
conventional units; then v  =  v ^ ^ / c .
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MASS AND ENERGY
8-1 examples off conversion

a How much mass does a 100-w att bulb dissi­
pate (in heat and light) in one year?

b The total electrical energy generated on Earth 
during the year 1 9 9 0  was probably between 1 and 
2 X  10*^ kilowatt-hours. To how much mass is this 
energy equivalent? In the acmal production of this 
electrical energy is this much mass converted to en­
ergy? Less mass? More mass? Explain your answer.

c Eric Berman, pedaling a bicycle at full throttle, 
produces one-half horsepower of useful power 
(1 horsepower =  7 4 6  watts). The human body is 
about 25  percent efficient; that is, 75  percent of the 
food burned is converted to heat and only 25  percent 
is converted to useful work. How long a time will Eric 
have to ride to lose one kilogram by the conversion of 
mass to energy? How can reducing gymnasiums stay 
in business?

8-2 relativistic chemistry
One kilogram of hydrogen combines chemically with 
8 kilograms of oxygen to form water; about 10® joules 
of energy is released.

a  Ten metric tons (10'' kilograms) of hydrogen 
combines with oxygen to produce water. Does the 
resulting water have a greater or less mass than the 
original hydrogen and oxygen? W hat is the magni­
tude of this difference in mass?

b A smaller amount of hydrogen and oxygen is 
weighed, then combined to form water, which is 
weighed again. A very good chemical balance is able 
to detect a fractional change in mass of 1 part in 10®. 
By what factor is this sensitivity more than enough 
—  or insufficient— to detect the fractional change in 
mass in this reaction?

PHOTONS
8-3 pressure off light

a Shine a one-watt flashlight beam on the palm 
of your hand. Can you feel it? Calculate the total force 
this beam exerts on your palm. Should  you be able to 
feel it? A particle of what mass exerts the same force 
when you hold it at Earth’s surface?

b From the solar constant (1 .3 7 2  kilowatts/ 
square meter. Sample Problem 8 -5 ) calculate the 
pressure of sunlight on an Earth satellite. Consider 
both reflecting and absorbing surfaces, and also 
“ real” surfaces (partially absorbing). Why does the 
color of the light make no difference?

c A spherical Earth satellite has radius r  =  1 
meter and mass m =  1 0 0 0  kilograms. Assume that 
the satellite absorbs all the sunlight that falls on it. 
W hat is the acceleration of the satellite due to the 
force of sunlight, in units of g, the gravitational accel­
eration at Earth’s surface? For a way to reduce this 
“disturbing” acceleration, see Figure 9-2 .

d It may be that particles smaller than a certain 
size are swept out of the solar system by the pressure of 
sunlight. This certain size is determined by the equal­
ity of the outward force of sunlight and the inward 
gravitational attraction of Sun. Estimate this critical 
particle size, making any assumptions necessary for 
your estimate. List the assumptions with your answer. 
Does your estimated size depend on the particle’s 
distance from Sun?

Reference; For pressure of lighr measuremenr in an elementary labo­
ratory, see Robert Pollock, American Journal of Physics, Volume 31, 
pages 901-904 (1963). Pollock’s method of determining the pres­
sure of light makes use of resonance to amplify a small effea to an 
easily measured magnitude. Dr. Pollock developed this experiment 
in collaboration with the same group of first-year students at Prince­
ton University with whom the authors had the privilege to work out 
the presentation of relativity in the first edition of this book.

8-4 measurement off photon 
energy

A given radioactive source emits energetic photons 
(X-rays) or very energetic photons (gamma rays) with 
energies characteristic of the particular radioactive 
nucleus in question. Thus a precise energy measure­
ment can often be used to determine the composition 
of even a tiny specimen. In the apparatus dia­
grammed in the figure on page 2 5 5 , only those events 
are detected in which a count on detector A 
(knocked-on electron) is accompanied by a count on 
detector B (scattered photon). W hat is the energy of 
the incoming photons that are detected in this way, in 
units of the rest energy of the electron?

8-5 Einstein's derivation:
equivalence off energy and 
mass— a worked example

P ro b lem
From the fact that light exerts pressure and carries 
energy, show that this energy is equivalent to mass 
and hence— by extension —  show the equivalence of 
all energy to mass.

C om m entary: The equivalence of energy and 
mass is such an important consequence that Einstein 
very early, after his relativistic derivation of this result, 
sought and found an alternative elementary physical 
line of reasoning that leads to the same conclusion. He 
envisaged a closed box of mass M  initially at rest, as 
shown in the first figure. A directed burst of electro-
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Thin foil 
(loosely bound 
electrons)

\ ''^Collimating slit
Shielding

3 :4 :5  triangle

Source of photons of 
characteristic energies

Electron detector

EXERCISE 8-4. Measurement of photon energy.

Photon detector

magnetic energy is emitted from the left wall. It trav­
els down the length L of the box and is absorbed at the 
other end. The radiation carries an energy E. But it 
also carries momenrum. This one sees from the fol­
lowing reasoning. The radiation exerts a pressure on 
the left wall during the emission. In consequence of 
this pressure the box receives a push to the left, and a 
momentum,/). But the momentum of the system as a 
whole was zero initially. Therefore the radiation 
carries a momentum p opposite to the momentum of 
the box. How can one use knowledge of the transport 
of energy and momentum by the radiation to deduce 
the mass equivalent of the radiation? Einstein got his 
answer from the argument that the center of mass of 
the system was not moving before the transport pro­
cess and therefore cannot be in motion during the 
transport process. But the box obviously carries mass 
to the left. Therefore the radiation must carry mass to 
the right. So much for Einstein’s reasoning in broad 
outline. Now for the details.

From relativity Einstein knew that the momentum 
/) of a directed beam of radiation is equal to the energy 
E of that beam (Section 8.4; both p  and E measured in 
units of mass). However, this was known before Ein­
stein’s relativity theory, both from Maxwell’s theory 
of electromagnetic radiation and from direct observa-

EXERCISE 8-5, first figure. Transfer of mass by radiation.

tion of the pressure exerted by light on a mirror 
suspended in a vacuum. This measurement had first 
successfully been carried out by E. F. Nichols and G.
F. Hull between 1901 and 1903. (By now the exper­
iment has been so simplified and increased in sensitiv­
ity that it can be carried out in an elementary labora­
tory. See the reference for Exercise 8-3.)

Thus the radiation carries momentum and energy 
to the right while the box carries momenrum and 
mass to the left. But the center of mass of the system, 
box plus radiation, cannot move. So the radiation 
must carry to the right not merely energy but mass. 
How much mass? To discover the answet is the object 
of these questions.

a  What is the velocity of the box during the time 
of ttansit of the radiation?

b After the radiation is absorbed in the other end 
of the box, the system is once again at rest. How far 
has the box moved during the transit of the radiation?

c Now demand that the center of mass of the 
system be at the same location both before and after 
the flight of the radiation. From this argument, what 
is the mass equivalent of the energy that has been 
transported from one end of the box to the other?

S o lu tio n
a During the transit of the radiation the mo­

mentum of the box must be equal in magnitude and 
opposite in direction to the momentum p  of the radi­
ation. The box moves with a very low velocity v. 
Therefore the Newtonian formula Mv suffices to cal­
culate its momentum:

Mv =  —p — — E

From this relation we deduce the velocity of the 
box,

v =  - E I M

b The transit time of the photon is very nearly
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/ =  L meters of light-travel time. In this time the box 
moves a distance

A x  =  pt =  — EL/M

c If the radiation transported no mass from one 
end of the box to the other, and if the box were the 
sole object endowed with mass, then this displace­
ment A x  would result in a net motion of the center of 
mass of the system to the left. But, Einstein reasoned, 
an isolated system with its center of mass originally at 
rest can never set itself into motion nor experience any 
shift in its center of mass. Therefore, he argued, there 
must be some countervailing displacement of a part of 
the mass of the system. This transport of mass to the 
right can be understood only as a new feature of the 
radiation itself. Consequently, during the time the 
box is moving to the left, the radiation must transport 
to the right some mass m, as yet of unknown magni­
tude, but such as to ensure that the center of mass of 
the system has not moved. The distance of transport is 
the full length L of the box diminished by the distance 
A x  through which the box has moved to the left in the 
meantime. But A x  is smaller than L in the ratio EjM. 
This ratio can be made as small as one pleases for any 
given transport of tadiant energy E by making the 
mass M. of the box sufficiently great. Therefore it is 
legitimate to take the distance moved by the radiation 
as equal to L itself. Thus, with arbitrarily high preci­
sion, the condition that the center of mass shall not 
move becomes

M A x +  mL =  0

Calculate the mass m and find, using A x  from part b, 

m - - A xM.i l  =  - { - E L /M ) { M I D

or, finally,

m =  E

In conventional units, we have the famous equation

£conv =

We conclude that the process of emission, rransport, 
and reabsorption of radiation of energy E is equivalent 
to the transport of a mass m =  E from one end of the 
box to the other end. The simplicity of this derivation 
and the importance of the result makes this analysis 
one of the most interesting in all of physics.

Discussion; The mass equivalence of radiant en­
ergy implies the mass equivalence of thermal energy 
and — by exrension —  of orher forms of energy, ac­

cording to the following reasoning. The energy that 
emerges from the left wall of the box may reside there 
originally as heat energy. This thermal energy excites a 
typical atom of the surface from its lowest energy state 
to a higher energy state. The atom returns from this 
higher state to a lower state and in the course of this 
change sends out the surplus energy in the form of 
radiation. This radiant energy traverses the box, is 
absorbed, and is ultimately converted back into ther­
mal energy. Whatever the details of the mechanisms 
by which light is emitted and absorbed, the net effect 
is the transfer of heat energy from one end of the box 
to the other. To say that mass has to pass down the 
length of the box when radiation goes from one wall 
to the other therefore implies that mass moves when 
thermal energy changes location. The thermal energy 
in turn is derived from chemical energy or the energy 
of a nuclear transformation or from electrical energy. 
Moreover, thermal energy deposited at the far end of 
the tube can be converted back into one or another of 
these forms of energy. Therefore these forms of 
energy —  and likewise all other forms of energy— are 
equivalent in their transport to the transport of mass 
in the amount m =  E.

How can one possibly uphold the idea that a pulse 
of radiation transports mass? One already knows that 
a photon has zero mass, by virtue of the relation 
(Section 8.4)

(mass)^ =  (energy)^ — (momentum)^ =  0

Moreover, what is true of the individual photon is 
true of the pulse of radiation made up of many such 
photons: The energy and momentum are equal in 
magnirude, so that the mass of the radiation necessar­
ily vanishes. Is there nor a fundamental inconsistency 
in saying in the same breath that the mass of the pulse 
is zero and that radiation of energy E transports the 
mass m =  E from one place to another?

The source of our difficulty is some confusion be­
tween two quite different concepts; (1) energy, rhe 
time component of the momentum -  energy 4-vector, 
and (2) mass, the magnitude of this 4-vector. When 
the system divides itself into two parts (radiation 
going to the right and box recoiling to the left) the 
components of the 4-vectors of the radiation and of 
the recoiling box add up to identity with the compo­
nents of the original 4-vector of the system before 
emission, as shown in the second figure. However, rhe 
magnitudes of the 4-vectors (magnirude =  mass) are 
not additive. No one dealing with Euclidean geome­
try would expect the length of one side of a triangle to 
be equal to the sum of the lengths of the other two 
sides. Similarly in Lorentz geometry. The mass of the 
system (M ) is not to be considered as equal to the sum
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of the mass of the radiation (zero) and the mass of the 
recoiling box (less than M). But components of 4- 
vectors are additive; for example,

/ energy o f \ ^  / energy o f \  _|_ /  energy of \
V system /  \  radiation /  \recoiling box/

Thus we see that the energy of the recoiling box is 
M — Not only is the energy of the box reduced by 
the emission of radiation from the wall; also its mass is 
reduced (see shortened length of 4-vector in dia­
gram). Thus the radiation takes away mass from the 
wall of the box even though this radiation has zero 
mass. The inequality

/ mass o f\ 
\  system /

mass(mass o f \  ^  /  mass of \
\radiation[zero}/ V^coiling box)

( of

is as natural in spacetime geometry as is the inequality 
5 #  3 +  4 for a 3-4-5 triangle in Euclidean geom­
etry.

What about the gravitational attraction exerted by 
the system on a test object? O f course the redistribu­
tion of mass as the radiation moves from left to right 
makes some difference in the attraction. But let the 
test object be at a distance r so great that any such 
redistribution has a negligible effect on the attraction. 
In other words, all that counts for the pull on a unit 
test object is the total mass M as it appears in New­
ton’s formula for gravitational force:

(force per 
unit mass

\  _  GM

Even so, will not the distant detector momentarily 
experience a less-than-normal pull while the radiation 
is in transit down the box? Is not the mass of the 
radiation zero, and is not the mass of the recoiling box 
reduced below the original mass M  of the system? So 
is not the total attracting mass less than normal during 
the process of transport? No! The mass of the system 
—  one has to say again —  is not equal to the sum of 
the masses of its several parts. It is instead equal to the 
magnimde of the total momentum -  energy 4-vector 
of the system. And at no time does either the total 
momentum (in our case zero!) or the total energy of 
the system change —  it is an isolated system. There­
fore neither is there any change in the magnitude M  of 
the total momentum -  energy 4-vectors shown in the 
second figure. So, finally, there is never any change in 
the gravitational attraction.

There is one minor swindle in the way this problem 
has been presented: The box cannot in fact move as a 
rigid body. If it could, then information about the 
emission of the radiation from one end could be ob­
tained from the motion of the other end before the 
arrival of the radiation itself— this information 
would be transmitted at a speed greater than that of 
light! Instead, the recoil from the emission of the 
radiation travels along the sides of the box as a vibra­
tional wave, that is, with the speed of sound, so that 
this wave arrives at the other end long after the radia­
tion does. In the meantime the absorption of the 
radiation at the second end causes a second vibrational 
wave which travels back along the sides of the box. 
The addition of the vibration of the box to the prob-

Energy

A

Momentum

Radiation 
(zero rest mass)

BEFORE

M

AFTER

EXERCISE 8-5, second figure. Radiation transfers mass from place to place even though the mass of the radiation is zero!
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lem requires a more complicated analysis but does not 
change in any essential way the results of the exercise.
References: A. Einstein, Annalen der Physik, Volume 20, pages 
6 2 7 -6 3 3  (1906). For a more careful treatment of the box, see A. P. 
French, Special Relativity (W . W . Norton, New York, 1968), pages 
1 6 -1 8  and 2 7 -2 8 .

8-6 gravitational red shift
N ote: Exercises 8-6 and 8-7 assume an acquaintance 
with the following elementary facts of gravitation.

(1) A very small object— or a spherically sym­
metric object of any radius— with mass M 
attracts an objea of mass m —  also small or 
spherically symmetric— with a force

GMm

( 2 )

F =

Here r is the distance between the centers of 
the two objects and G is the Newtonian con­
stant of gravitation, G =  6 .6 7 X 1 0 “ ** 
(meter)^/(kilogram-second^).
The work required to move a test particle of 
unit mass from r to r +  dr against the gravita­
tional pull of a fixed mass M  is GM{dr/r'^). 
Translated from conventional units of energy 
to units of mass this work is

dW  =  ■coov
GM dr dr 

M* — .-2

per unit of mass contained in the test particle.
(3) The symbol M* =  GMjc'^ in this formula

has a simple meaning. It is the mass of the 
center of attraction translated from units of 
kilograms to units of meters. For example, the 
mass of Earth =  5.974 X lÔ '* kilo­
grams) expressed in length units is =
4.44 X 10“  ̂ meters, and the mass of Sun 
(M s„„= 1.989 X 1030 kg) is M*su„ =  
1.48 X 1Q3 meters.

(4) Start the test particle at a distance r from the 
center of attraction of mass M and carry it to an 
infinite distance. The work required is IF =  
M */r in units of mass per unit of mass con­
tained in the test particle.

So much for the minitutorial. Now to business.
a  What fraction of your rest energy is converted 

to potential energy when you climb the Eiffel Tower 
(300 meters high) in Paris? Letg* be the acceleration 
of gravity in meters/meter^ at the surface of Earth:

= . 1 g

b What fraction of one’s rest energy is converted 
to potential energy when one climbs a very high lad­
der that reaches higher than the gravitational influ­
ence of Earth? Assume that Earth does not rotate and 
is alone in space. Does the fraction of the energy that is 
lost in either part a or part b depend on your original 
mass?

c Apply the result of part a to deduce the frac­
tional energy change of a photon that rises vertically to 
a height z in a uniform gravitational field g*. Photons 
have zero mass; one can say formally that they have 
only kinetic energy E =  K. Thus photons have only 
one purse —  the kinetic energy purse— from which 
to pay the potential energy tax as they rise in the 
gravitational field. Light of frequency / is  composed of 
photons of energy E =  hf/c^ (see Exercise 8-31). 
Show that the fractional energy loss for photons rising 
in a gravitational field corresponds to the following 
fractional change in frequency:

/
=  —g*z [uniform gravitational field]

Note: We use /  for frequency instead of the usual 
Greek nu, V, to avoid confusion with v for speed.

d Apply the result of part b to deduce the frac­
tional energy loss of a photon escaping to infinity. (To 
apply b for this purpose is an approximation good to 
one percent when this fractional energy loss itself is 
less than two percent.) Specifically, let the photon 
start from a point on the surface of an astronomical 
object of mass M  (kilograms) or AI* (meters) =  
GM/c^ and radius r. From the fractional energy loss, 
show that the fractional change of frequency is given 
by the expression

f

M*
[escape field of spherical object]

'Earth Earth

This decrease in frequency is called the gravitational 
red  shift because, for visible light, the shift is toward 
the lower-frequency (red) end of the visible spectmm.

e Calculate the fractional gravitational red shifts 
for light escaping from the surface of Earth and for 
light escaping from the surface of Sun.

Discussion: The results obtained in this exercise 
are approximately correct for light moving near Earth, 
Sun, and white dwarf (Exercise 8-7). Only general 
relativity correctly describes the motion of light very 
close to neutron star or black hole (Box 9-2).

8-7 density of the companion of 
Sirius

Note: This exercise uses a result of Exercise 8-6.
Sirius (the Dog Star) is the brightest star in the 

heavens. Sirius and a small companion revolve about
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one another. By analyzing this revolution using New­
tonian mechanics, astronomers have determined that 
the mass of the companion of Sirius is roughly equal 
to the mass of our Sun (A1 is about 2 X 10^° kilo­
grams; M* is about 1.5 X 10^ meters). Light from 
the companion of Sirius is analyzed in a spectrometer. 
A spectral line from a certain element, identified from 
the pattern of lines, is shifted in frequency by a frac­
tion 7 X lO""* compared to the frequency of the same 
spectral line from the same element in the laboratory. 
(These figures are experimentally accurate to only one 
significant figure.) Assuming that this is a gravita­
tional red shift (Exercise 8-6), estimate the average 
density of the companion of Sirius in grams/centime- 
ter^. This type of star is called a w hite dw arf (Box
9-2).

CREATIONS,
TRANSFORMATIONS,
ANNIHILATIONS
8-8 nuclear excitation
A nucleus of mass m initially at test absorbs a gamma 
ray (photon) and is excited to a higher energy state 
such that its mass is now 1.01 m.

a  Find the energy of the incoming photon 
needed to carry out this excitation.

b Explain why the required energy of the incom­
ing photon is greater than the change of mass of the 
nucleus.

BEFORE A / V X / V ^  O ®
A m

(at rest)

AFTER c O ^
1.01 m

EXERCISE 8-8. Excitation of a  nucleus by a  gamma ray.

BEFORE ^  O - - - - - - - - - - ^  be found)
A

AFTER ' " O  ^
Q (not known)

(at rest)

EXERCISE 8-9. Stopping a nucleus by emission of a gamma ray.

8-10 photon integrity
Show that an isolated photon cannot split into two 
photons going in directions other than the original 
direction. (Hint: Apply the laws of conservation of 
momentum and energy and the fact that the third side 
of a triangle is shorter than the sum of the other two 
sides. What triangle?)

8-11 pair production by a 
lonely photon?

A gamma ray (high-energy photon, zero mass) can 
carry an energy greater than the rest energy of an 
electron -  positron pair. (Remember that a positron 
has the same mass as the electron but opposite 
chatge.) Nevertheless the process

(energetic gamma ray)----- (electron) +  (positron)

cannot occur in the absence of other matter or radia­
tion.

a Prove that this process is incompatible with the 
laws of conservation of momentum and enetgy as 
employed in the labotatory frame of reference. Ana­
lyze the alleged creation in the frame in which electron 
and positron go off at equal but opposite angles ±  (f) 
with the extended path of the incoming gamma ray.

b Repeat the demonstration— which then be­
comes much more impressive— in the center-of-mo- 
mentum frame of the alleged pair, the frame of refer­
ence in which the total momentum of the two 
resulting particles is zero.

8-9 photon braking
A moving radioactive nucleus of known mass M  emits 
a gamma ray (photon) in the forward direction and 
drops to its stable nonradioactive state of known mass 
m. Find the energy of the incoming nucleus 
(BEFORE diagtam in the figute) such that the result­
ing mass m nucleus is at rest (AFTER diagtam). The 
unknown energy of the outgoing gamma ray 
should not appear in your answer.

8-12 photoproduction of a pair 
by two photons

Two gamma rays of different enetgies collide in a 
vacuum and disappear, bringing into being an 
electron -  positron pair. For what ranges of energies of 
the two gamma tays, and fot what range of angles 
between their initial directions of propagation, can 
this reaction occur? (Hint: Start with an analysis of the 
reaction at threshold; at threshold the electron and 
positron are relatively at rest.)
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BEFORE mQ-
A

AFTER A / V W ^D C
EXERCISE 8-13. Decay of positronium in flight.

8-13 decay off positronium
A moving "atom” called positronium (an electron 
and positron orbiting one another) of mass m and 
initial energy £  decays into two gamma rays (high- 
energy photons) that move in opposite direaions 
along the line of motion of the initial atom. Find the 
energy of each gamma ray, Ec and £ o , in terms of the 
mass m and energy E/̂  ̂ of the initial particle. Check 
that Ec =  £d in the case that the initial particle is at 
rest.

8-14 positron—oloctron 
annihilation I

A positron e"*" of mass m and kinetic energy K  is 
annihilated on a target containing electrons e~ (same 
mass m) practically at rest in the laboratory frame:

^■'■(fast) -b e (at rest) ' radiation

a  By considering the collision in the center-of- 
momentum frame (the frame of reference in which 
the total momentum of the initial particles is equal to 
zero), show that it is necessary for at least two gamma 
rays (rather than one) to result from the annihilation.
b Return to the laboratory frame, shown in the 

figure. The outgoing photons move on the line along 
which the positron approaches. Find an expression for 
the energy of each outgoing photon. Let your deriva­
tion be free of any reference to velocity.

c Using simple approximations, evaluate the an­
swer to part b in the limiting cases (1) very small K 
and (2) very large K. (Very small and very large 
compared with what?)

BEFORE m Q .
A

Q m
B

(al rest)

AFTER D c
LABORATORY FRAME

EXERCISE 8-14. Positron-electron annihilation.

BEFORE m O
A

Q m
B

(at rest)

AFTER

EXERCISE 8-15, first figure. Positron -  electron annihilation.

8-15 positron—oloctron 
annihilation II

A positron e'*’ o f mass m and kinetic energy K  is 
annihilated on a target containing electrons e~ (same 
mass m) practically at rest in the laboratory frame;

e‘*'(fast) +  e~(at rest)----- * radiation

The resulting gamma rays go off at different angles 
with respea to the direaion of the incoming positron, 
as shown in the first figure.

a  Derive an expression for the energy of one of 
the gamma rays in the laboratory frame as a fiinaion 
of the angle between the direction of emergence of 
that gamma ray and the direction of travel of the 
positron before its annihilation. The gamma ray en­
ergy should be a funaion of only the energy and mass 
of the incoming positron and the angle of the outgo­
ing gamma ray. (Hint: Use the law of cosines, as 
applied to the second figure.)

P d^ = P a^ + P c^~  2/>a/»cCos (f)c

b Show that for outgoing gamma rays moving 
along the positive and negative x-direction, the results 
of this exercise reduce to the tesults of Exercise 
8-14.

EXERCISE 8-15, second figure. Conservation of vector momen­
tum means that the momentum triangle is closed.
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8-16 creation off proton— 
antiproton pair by an 
electron

W hat is the threshold kinetic energy K,i, of the inci­
dent electron for the following process?

electron (fast) +  proton (at rest)----- ^
electron +  antiproton +  two protons

8-17 colliders
How much more violent is a collision of two protons 
that are moving toward one another from opposite 
directions than a collision of a moving proton with 
one at rest?

Discussion: When a moving particle strikes a 
stationary one, the energy available for the creation of 
new particles, for heating, and for other interactions 
—  or, in brief, the available interaaion energy— is 
less than the initial energy (the sum of the rest and 
kinetic energies of the initial two particles). Reason: 
The particles that are left over after the reaction have a 
net forward motion (law of conservation of momen­
tum), the kinetic energy of which is available neither 
for giving these particles velocity relative to each other 
nor for producing more particles. For this reason 
much of the particle energy produced in accelerators is 
not available for studying interactions because it is 
carried away in the kinetic energy of the products of 
the collision.

However, in the center-of-momenmm frame, the 
frame in which the total momentum of the system is 
equal to zero, no momentum need be carried away 
from the interaction. Therefore the energy available 
for interaction is equal to the total energy of the 
incoming particles.

Is there some way that the laboratory frame can be 
made also the center-of-momentum frame? One way 
is to build two particle accelerators and have the two 
beams collide head on. If the energy and masses of the 
particles in each beam are respectively the same, then 
the laboratory frame is the center-of-momentum 
frame and all the energy in each collision is available 
interaaion energy. It is easier and cheaper to achieve 
the same efficiency by arranging to have particles 
moving in opposite directions in the same accelerator. 
A magnetic field keeps the particles in a circular path, 
“storing” them at their maximum energy for re­
peated tries at interaction. Such a facility is called a 
co llider. The figure on page 262 gives some details 
of a particular collider.

a  W hat is the total available interaction energy 
for each encounter in the laboratory frame of the 
Tevatron shown on page 262?

b Now transform to a frame in which one of the 
incoming particles is at rest (transformation given in 
Exercise 7-5). This would be the situation if we tried 
to build an accelerator in which moving antiprotons 
hit a stationary target of, say, liquid hydrogen (made 
of protons and electrons). [Simplify: At 0.9 TeV =  
9 X 10** eV what is the effective speed v of the 
proton? What is its momentum compared with its 
energy? What is the value of the time stretch factor y 
=  E/mTi If the target protons were at rest, what 
energy, in TeV, would the incoming antiproton need 
to have in order to yield the same interaction energy as 
that achieved in the Tevatron?

Wait a minute! You keep telling us that 
energy and momentum have different values 
when measured with respect to different 
reference frames. Yet here you assume the 
“interaction energy” is the same in the Te­
vatron laboratory frame as it is in the rest 
frame of a proton that moves with nearly the 
speed of light in the Tevatron frame. Is the 
energy of a system different in different 
frames, or is it the same?

— There is an important distinction between 
the total energy of a system and the 
“available interaction energy,” just as 
there is an important distinction between 
your money in the bank and “ready cash” 
in the bank that you can spend. If some of 
your money in the bank has been put in 
escrow for payment on a house you are 
buying, then you cannot spend that part 
of your bank money to buy a new car. 
Similarly, the total energy of the proton-  
antiproton system is much smaller in the 
Tevatron laboratory frame than in the 
frame in which the proton is initially at 
rest, but all of the Tevatron laboratory- 
frame energy can be spent— used to 
create new particles, for example. In con­
trast, only a minute fraction of the energy 
in the frame in which the proton is initially 
at rest can be spent to create new particles, 
since total momentum must be conserved; 
most of the total energy is kept “in 
escrow” for this purpose. The number 
and kinds of new particles created must be 
the same for all observers! Therefore the 
“available interaction energy” must be 
the same for all observers. The central 
point here is that the Tevatron collider 
design makes all of the energy in the 
proton-antiproton system “available” 
for use in the laboratory.
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EXERCISE 8-17. Top: Aerial view of the Tevatron 
ring at Fermi National Accelerator Laboratory in 
Batavia, Illinois. The ring is 6 .3  kilometers in cir­
cumference. Bottom: View along the tunnel of the 
Tevatron. Protons (positive charge) and antiprotons 
(antiparticle of the proton: same mass, negative 
charge) circulate in separate beams in opposite direc­
tions in the same vacuum chamber in the lower ring of 
superconducting magnets shown in the photo. The 
upper ring of regular magnets accelerates protons from 
8  CeV to 1 5 0  GeV. Some of these protons are injected 
into the lower set of magnets directly, rotating clock­
wise. Other protons strike a copper target and create 
antiprotons at a lower energy that are accumulated 
over approximately 15 hours in a separate ring (not 
shown) and then reaccelerated to 15 0  GeV and in­
serted into the lower ring, circulating counterclock­
wise. (Opposite charge, opposite motion yields same 
magnetic force toward the center, hence counterrota­
tion around the same circle.) Then particles in both 
beams in the lower ring of magnets are accelerated at 
the same time from 15 0  GeV to a  final energy of 0 .9  
TeV per particle. (1 teraelectron-volt =  1 0 ‘^ electron- 
volts, or approximately 1 0 0 0  times the rest energy of 
the proton or antiproton.) After acceleration, the 
beams are switched magnetically so that they cross 
each other at multiple intersection points around the 
ring, allowing protons and antiprotons to collide in the 
laboratory center-of-momentum frame. Detectors at 
the points of intersection monitor products of the colli­
sions. Protons and antiprotons that do not interact at 
one intersection are not wasted; they may interact at 
another intersection point or on subsequent trips 
around the ring. The particles are allowed to coast 
around and around at full energy for as long as 2 4  
hours as they interact. Question: Approximately how 
many revolutions around the ring does a  given proton 
or antiproton make in 2 4  hours? Photographs cour­
tesy of Fermi Laboratory.
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DOPPLER SHIFT
8-18 Doppler shift along the 

x-direclion
Note: Recall Exercise L-5 in the Special Topic on 
Lorentz Transformation, following Chapter 3.

Apply the momenergy transformation equations 
(Exercise 7-5) to light moving in the positive x-direc- 
tion for which p ^ =  p =  E.

a Show that the relation between photon energy 
E' in the rocket frame and photon energy E in the 
laboratory frame is given by the equation

E - = y ( l + p ) E '  =  

(1 +  v) E'

(1 +  v) E'
(1 -

[(1 -  t.)(l +
[photon moves along 

positive x-direction]

b  Use the Einstein relation between photon en­
ergy E and classical wave frequency / ,  namely =  
h f or E =  hf/c^ and E' =  h f  /c^, to derive the trans­
formation for frequency

/
[wove motion along 
positive x-direction]

This is the Doppler shift equation for light waves 
moving along the positive x-direction.

Note: We use/for frequency instead of the usual 
Greek nu, V, to avoid confusion with v for speed.

C Show that for a wave moving along the nega­
tive x-direction, the equation becomes

r 1 -
/ '

[wave motion along 
negative x-direction]

d  Derive the corresponding equations that con­
vert laboratory-measured frequency/to rocket-mea­
sured frequency f  for waves moving along both posi­
tive and negative x-directions.

8-19 Doppler equations
A photon moves in the xy laboratory plane in a direc­
tion that makes an angle (f) with the x-axis, so that its 
components of momentum are p^ —p  cos (f) and py =  
p sin (f) and p^ =  0.

a  Use the Lorentz transformation equations for 
the momentum -  energy 4-vector (Exercise 7-5) and 
the relation — /»̂  =  0 for a photon to show that in 
the rocket frame, moving with speed along the

laboratory x-direction, the photon has an energy E' 
given by the equation

E' =  E y(l — cos (/))

and moves in a direction that makes an angle (f)' with 
the x'-axis given by the equation

cos 0 '  =
COS 0  “

1 -  cos 0

b Derive the inverse equations for E and cos 0  as 
functions of E', cos 0 \  and Show that the results 
are

E =  E 'y ( l  +  v„̂  cos (f)')

, COS <f>' +  t',
cos 0  -  — ----------^

1 +  cos 0

c If the frequency of the light in the laboratory 
frame is /  what is the frequency f '  of the light in the 
rocket frame? Use the Einstein relation between pho­
ton energy E and classical wave frequency /  namely 
Econv “  ^ /o t E =  bf/c^ and E' =  h f'/c^, to derive the 
transformations for frequency

/ '  = f y { \ -  cos 0 )  
f = f 'y ( X  +  cos 0 ')

This difference in frequency due to relative motion 
is called the D o p p le r shift.

Note: We use/ for frequency instead of the usual 
Greek nu, V, ro avoid confusion with v for speed.

d  For wave motion along the positive and nega­
tive x-direction, show that the results of this exercise 
reduce to the results of Exercise 8-18.

e Discussion question: Do the Doppler 
equations enable one to determine the rest frame of 
the source that emits the photons?

8-20 the physicist and the 
traffic light

A physicist is arrested for going through a red light. In 
court he pleads that he approached the intersection at 
such a speed that the red light looked green to him. 
The judge, a graduate of a physics class, changes the 
charge to speeding and fines the defendant one dollar 
for every kilometer/hour he exceeded the local speed 
limit of 30 kilometers/hour. What is the fine? Take 
the wavelength of green light to be 5 30 nanometers =  
530 X 10“^ meter) and the wavelength of red light to 
be 650 nanometers. The relation between wavelength 
A and frequency/for light is/A  =  c. Notice that the
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light propagates in the negative x-direction {(f) =
(f)' =  n).

8-21 speeding light bulb
A bulb that emits spectrally pure red light uniformly 
in all directions in its rest frame approaches the ob­
server from a very great distance moving with nearly 
the speed of light along a straight-line path whose 
perpendicular distance from the observer is A Both 
the color and the number of photons that reach the 
observer per second from the light bulb vary with 
time. Describe these changes qualitatively at several 
stages as the light bulb passes the observer. Consider 
both the Doppler shift and the headlight effect (Exer­
cises 8-19 and L-9).

8-22 Doppler shift at the limb 
off Sun

Sun rotates once in about 25.4 days. The radius of 
Sun is about 7.0X10® meters. Calculate the Doppler 
shift that we should observe for light of wavelength 
500 nanometers =  500 X 10“  ̂meter) from the edge 
of Sun’s disk (the lim b) near the equator. Is this shift 
toward the red end or toward the blue end of the 
visible spectrum? Compare the magnitude of this 
Doppler shift with that of the gravitational red shift of 
light from Sun (Exercise 8-6).

8-23 the expanding universe
N ote; Recall Exercise 3-10.

a  Light from a distant galaxy is analyzed by a 
spectrometer. A spectral line of wavelength 730 nano­
meters =  730 X 10“  ̂meters is identified (from the 
pattern of other lines) to be one of the lines of hydro­
gen that, for hydrogen in the laboratory, has the 
wavelength 487 nanometers. If the shift in wave­
length is a Doppler shift, how fast is the observed 
galaxy moving relative to Earth? Notice that the light 
propagates in a direction opposite to the direction of 
motion of the galaxy {(f) =  <f)' — 7 l ) .

b There is independent evidence that the ob­
served galaxy is 5 X 10® light years away. Estimate 
the time when that galaxy parted company from our 
own galaxy —  the Milky Way —  using the simplify­
ing assumption that the speed of recession was the 
same throughout the past (that is, not slowed down 
by the gravitational attractions between one galaxy 
and another). The astronomer Edwin Hubble discov­
ered in 1929 that this time— whose reciprocal is 
called the Hubble constant, and which may itself 
therefore appropriately be called the Hubble time — 
has about the same value for all galaxies whose dis­
tances and speeds can be measured. Hence the con­
cept of the expanding universe.

c Will allowance for the past effect of gravitation 
in slowing the expansion increase or decrease the esti­
mated time back to the start of this expansion?
Reference: E. Hubble, Proceedings of the U. S. National Academy of 
Sciences, Volume 15, pages 168-173 (1929).

8-24 twin paradox using the 
Doppler shifft

The Twin Paradox (Chapter 4 and Exercises 4-1 and 
5-8) can be resolved elegantly using the Doppler shift 
as follows. Paul remains on Earth. His twin sister 
Penny travels at a high speed, v, to a distant star and 
returns to Earth at the same speed. Both Penny and 
Paul observe a distant variable star whose light gets 
alternately dimmer and then brighter with a fre­
quency/in the Earth frame { /' in the rocket frame). 
This variable star is very much farther away than the 
length of Penny’s path and is in a direction perpen­
dicular to this path in the Earth frame. Both observers 
will count the same total number of pulsations of the 
variable star during Penny’s round trip. Use this fact 
and the expression for the Doppler shift at the 90-de­
gree laboratory angle of observation (Exercise 8-19) 
to verify that at the end of the trip described in 
Chapter 4, Penny will be only 20 years older while 
Paul will have aged 202 years.
Reference: E. Feenberg, American Journal of Physics, Volume 27, 
page 190 (1959).

8-25 Doppler line broadening
The average kinetic energy of a molecule in a gas at 
temperature T  degrees Kelvin is {i/2 )kT . (The con­
stant k is called the Boltzmann constant and has the 
value 1.38 X 10“ ^^joules/degree Kelvin). Molecules 
of gas move in random directions. Calculate the aver­
age speed from the low-velocity approximation of 
Newtonian mechanics. Estimate the fractional change 
in frequency due to the Doppler shift that will be 
observed in light emitted from a molecule in a gas at 
temperature T. Will this shift increase or decrease the 
observed frequency of the emitted light? This effect, 
called Doppler broadening of spectral lines, is one 
reason why a given spectral line from a gas excited in 
an electric discharge contains a range of frequencies 
around a central frequency.

8-26 £>•■1 conv = ntĉ  ffrom the
Doppler shifft

Einstein’s famous equation in conventional units, 
Eratconv ~  ^F'd the telativistic expression for en­
ergy can be derived from (1) the relativistic expression 
for momentum (derived separately, for example in 
Exercise 7-12), (2) the conservation laws, and (3) the



EXERCISE 8-27 EVERYTHING GOES FORWARD 2 6 5

Doppler shift (Exercise 8-18). In conventional units, 
a photon has energy — hf, where h is Planck’s 
constant and / i s  the frequency of the corresponding 
classical wave. (We use/ for frequency instead of the 
usual Greek nu, V, to avoid confusion with v for 
speed.) Divide by to convert to units of mass: E =  
hf/c^. Expressed in units of mass, a photon has equal 
energy and momentum. Therefore the momentum of 
a photon is also given by the equation p  =  hf/c^. 
Momentum does differ from energy, however, in that 
it is a 3-vector. In one dimensional motion, the sign of 
the momentum (positive for motion to the right, 
negative for motion to the left) is important, as in the 
analysis below.

A _ '“'de of mass emits two photons in
opposite directions while remaining at rest in the lab­
oratory frame. Conservation of momentum requires 
these two photons to have equal and opposite mo­
menta and therefore to correspond to the same classi­
cal frequency /  In consequence, they also have the 
same energy.

a First result: Energy released =A w . Now
view this process from a rocket frame moving at speed 
V —  t 'c o n v /^  along the direction of flight of the two 
photons. The particle moves in this frame, but does 
not change velocity on emitting the photons. The 
photon emitted in the same direction as the rocket 
motion will be upshifted in energy (and in corre­
sponding classical frequency) as compared with the 
energy observed in the laboratory; the other back­
ward-moving photon will be downshifted. We can 
calculate this frequency shift using the Doppler for­
mulas (Exercise 8-18). Use the expression mjv for 
momentum of a particle, equation (7-8), to state the 
conservation of momentum (notice the minus sign 
before the second photon term, representing the pho­
ton moving to the left):

=  m ^ v y  -b h f

[ ^ 1
1/2

C‘

h f \  1 
1 +

units result by to convert to conventional units and 
the equation in the well-known form

energy released (conventional units) =  {Am)c^

b Second result: =  m. Now add the con­
dition that energy is conserved in the laboratory 
frame:

^ b e fo re  -  -Eafter + ( 2 )

Compare equations (1) and (2). These two equa­
tions both describe a particle at rest. Show that they 
are consistent if Etefore =  "̂ before and E ^  =  and 
that therefore in general

or, in conventional units.

^restconv  =

c T h ird  result: At any speed, E =  my. Next 
add the condition that energy be conserved in the 
rocket frame. Place primes on expressions for rocket- 
measured energy of the particle and use the Doppler 
equations to transform the classical frequency back to 
the laboratory value f .  Show that the result is

■^before E'after +  K^hf/ (3)

The salient difference between equations (2) and 
(3) is that in the rocket frame the particle is in motion. 
Deduce that the general expression for energy of a 
particle includes the stretch factor gamma:

E =  my

or, in conventional units,

ficonv =  m y c ^

Reference: Fritz Rohrlich, American Journal o f Physics, Volume 58,
pages 3 4 8 -3 4 9  (April 1990).

Simplify this expression to

»«before =  "^after + ( 1)

or

m\before =  Am =  2hf/c^ =  energy released

Conservation of momentum in both frames im­
plies a change in particle mass equal to the total 
energy of the emitted photons. Multiply the mass-

8-27 everything goes forward
“Everything goes forward’’ is a good mle of thumb 
for interactions between highly relativistic particles 
and stationary targets. In the laboratory frame, many 
particles and gamma rays resulting from collisions 
continue in essentially the same direction as the in­
coming particles.

The first figure (top) shows schematically the colli­
sion of two protons in the center-of-momentum 
frame, the frame in which the system has zero total
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momentum. A great many different particles are cre­
ated in the collision, including a gamma ray (the 
fastest possible particle) that by chance moves per­
pendicular to the line of motion of the incoming 
particles: (f)' =  7T/2 radians.

The first figure (bottom) shows the same interac­
tion in the laboratory frame, in which one proton is 
initially at rest. At what angle (f) does the product 
gamma ray move in this frame?

a  From the Doppler equations (Exercise 8-19), 
show that the outgoing angle <f) for the gamma ray in 
the laboratory frame is given by the expression

cos 0  = ( 1)

b What is the speed t'proton of the rightward- 
moving proton in the laboratory frame? We define 
the laboratory frame by riding at speed on the 
leftward-moving proton in the center-of-momentum 
frame. Therefore the rightward-moving proton also 
moves with speed v„̂  in the center-of-momentum 
frame. Use the law of addition of velocities to find the 
speed of the rightwatd-moving proton in the labora­
tory frame (Section L.7 and Exercise 3.11).

2v.
V —*̂pro«Ki

rel
1 +

( 2)

C In order to solve equation (1) for (^, we need to 
know the value of Equation (2) is a quadratic in

Show that the solution is

(3)
•^proton

Here yp„K,n the stretch factor y using the proton 
velocity

d We are interested in finding the angle (f) when 
the incoming proton is highly telativistic. In this case 

1. From the approximation for small angles•^proton

(0  expressed in radians)

cos 0  ~  1 — 0 ^ /2 101 « 1

show that the angle 0  is given approximately by the 
expression

(4)

e What is the value of 0  in radians and in de­
grees for incident protons of energy £ =  200 GeV? 
For incident protons of energy 2 X 10“* GeV? (1 GeV 
=  10’ electron-volts. Mass of the proton is approxi­
mately 1 GeV.)

CENTER-OF-MOMENTUM FRAME

EXERCISE 8-27, first figure. In the center-of-momentum frame two incoming protons collide, 
creating many particles, among them a gamma ray that moves perpendicular to the original line of motion. In 
the laboratory frame, in which one proton is initially at rest, in what direction does the gamma ray move?
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8-28 decay of ;i*-meson
A 7T meson (neutral pi-meson) moving in the x-dir- 
ection with a kinetic energy in the laboratory frame 
equal to its mass m decays into two photons. In the

ROCKET FRAME LABORATORY FRAME
EXERCISE 8-28 . Two photons resulting from the decay of a 71° 
meson, as observed in rocket and laboratory frames.

rocket frame in which the meson is at rest these pho­
tons are emitted in the positive and negative ̂ '-direc­
tions, as shown in the figure. Find the energies of the 
two photons in the rocket frame (in units of the mass 
of the meson) and the energies and directions of prop­
agation of the two photons in the laboratory frame.

COMPTON SCATTERING
8-29 Compton scattering
Analyze Compton scattering of an incident photon 
that collides with and recoils from an electron that is 
initially at rest. Compton scattering in one dimension 
was discussed in Section 8.4. Here we analyze Comp­
ton scattering in rwo dimensions. The goal is ro deter­
mine the reduced energy of the photon that has been 
scattered with a change of direction measured by the

EXERCISE 8 -27 , second figure. Forward spray of particles created in collisions near the middle of the 
picture. An incident particle, probably a charged %-meson, enters from the left with energy approximately 
100 to 2 0 0  times its rest energy and strikes a nucleus of neon or hydrogen. Curving paths in the imposed 
magnetic field are probably knock-on electrons. These and the cascade of other particles move initially in the 
same direction as the incoming 71-meson: “Everything goes forward!" Photograph courtesy of Fermi 
Laboratory.
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EXERCISE 8-29, first figure. Compton scattering ofa photon from 
an electron initially at rest. The angle (f) is called the scattering 
angle.

EXERCISE 8-29, second figure. Conservation of vector momen­
tum means that the momentum triangle is closed.

angle (f>. The angle 0  is called the scattering angle. 
Use the notation in the first figure. Do not use fre­
quency or wavelength or Planck’s constant or speed in 
your analysis — only the laws of conservation of mo­
mentum and energy plus equations:

F  - 
£2 • /  =  0

[for an electron] 
[for a photon]

Discussion: The conservation of momentum is a 
vector conservation law. This means that the vector 
sum of the momenta after the collision equals the 
momentum of the photon before the collision. In 
other words, the vectors form a triangle, as shown in 
the second figure. Apply the law of cosines to this 
figure:

pD —pA^ +  Pc 2/»a/>cCOS0

a Now replace all momenta with energies (easy 
for photons, more awkward for the electron), com-

-----------  Energy of scattered photons ------- ► -

EXERCISE 8-29, third figure. Results of the Compton experiment 
in which photons were scattered from the electrons in a  graphite 
target. At each angle of the detector except (f} =  0  there are some 
photons scattered with loss of energy (electron recoils by itself) and 
other photons scattered with little or no loss of energy (electron and 
atom recoil as a unit).
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bine with the conservation of energy, and derive the 
Compton scattering formula:

"'incident
^scattered p

^ _j_ ^incident ^ ^

m
COS </>)

Exercise 8-30 gives some examples of this result.
b Compton’s original experiments showed that 

some photons were scattered without a measurable 
change of energy. These photons were scattered by 
electrons that did not leave the atom in which they 
were bound, so that the entire atom recoiled as a unit. 
Assume that the energy of the incoming photon is at 
most a few times the rest energy of the electron. In this 
case, show that the enetgy change is negligible for 
photons scattered by electrons tightly bound to an 
atom of average mass (say 10 X 2000 X mass of an 
electron). See the third figure.
Reference; A. H. Compton, Physical Review, Volume 22, pages 
409-413 (1923).

8-30 cempton scattering 
examples

a  A  gamma ray photon of energy equal to twice 
the mass of the electron scatters from an electron 
initially at test. Provide the following answets in units 
of MeV. (Mass of the electron is 0.511 MeV.) From 
the Compton scattering formula find the enetgy of the 
scattered photon for scattering angles 0, 90, and 180 
degrees. If you have access to a computer, calculate 
this energy at 10-degree increments between zero and 
180 degrees and plot the resulting curve of energy vs. 
angle.

b In a new set of experiments, the incident 
gamma ray has energy equal to five times the test 
energy of the electron. Repeat the calculations of part 
a for this case.

8-31 energy of a photon and 
frequency of light

Planck found himself forced in 1900 to recognize that 
light of frequency/(vibrations/second) is composed 
of quanta (Planck’s word) or photons (Einstein’s later 
word), each endowed with an energy E =  bf/c^ (en­
ergy in units of mass) where is a universal constant of 
propottionality called Planck’s constant. How can 
Planck’s formula possibly make sense when —  as we 
now know —  not only E but also/depend upon the 
frame of reference in which the light is observed? (We 
use/for frequency instead of the usual Greek nu, V, to 
avoid confusion with v for speed.)

a  A photon moves along the positive x-axis. Re­
sults of Exercise 8-18 show the relation between the 
energy of this photon measuted in the rocket frame 
and its energy measured in the laboratory frame. A 
classical electromagnetic wave moves along the posi­
tive x-axis. Results of Exercise L-5 (at the end of the 
Special Topic following Chapter 3) show the telation 
between the frequency of this wave measured in the 
rocket frame and its enetgy measured in the labora­
tory frame. Compare these two results to show that if 
we associate photons with a light wave in one coordi­
nate system, this association will hold in all coordinate 
systems.

b The theory of relativity does not tell us the 
value of Planck’s constant b in the formula E =  
(^/c^)/that relates photon energy (in units of mass) to 
classical wave frequency. Experiment shows the con­
stant b  to have the value 6.63 X 10” “̂* joule-second. 
Show that if energy is measured in conventional units, 
the relation between energy and frequency has the 
form

Econv ~  [energy in conventional units]

C Show that the formula for Compron scattering 
(Exercise 8-29) becomes

/ s o
.Anddent

1 +  (1 -  cos 0 )

In the 1920s there was great resistance to the idea 
that when the electron is “ shaken ” by the electric field 
of wave at one frequency it should scatter (reemit) this 
radiation at a lower frequency.

8-32 Inverse Compton 
scattering

In Compton’s original experiment an X-ray photon 
scattered with reduced energy from an electron ini­
tially at rest. In contrast, a photon scattered from a 
moving electron can increase the energy of the pho­
ton. Such an interaction is called inverse C om pton 
scattering. The figure (page 270) shows an exam­
ple.

When a high-energy electron collides head on with 
a low-energy photon, what is the energy of the outgo­
ing photon? Answer this question using parts a -  e or 
by some other method.

a Write down equations of conservation of en­
ergy and momenrum, using subscripts A  through D 
from the figute.

b Recall that the energy of a photon is equal to 
the magnitude of its momentum. Use this to simplify
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m ( y

A

BEFORE

m ( y
c D

AFTER
EXERCISE 8-32. Inverse Compton scattering. A low-energy photon 
is scattered by a high-energy electron.

the conservation equations, taking leftward momen­
tum to be negative.

c We are not interested in the energy or the 
momentum of outgoing electron C. Therefore solve 
the energy equation for and the momentum equa­
tion for Pc, square and subtract the two sides, and use 
Ec ~  Pc ~  What happens to Ej^ and p^ on the 
other side of the resulting equation? For now keep 
terms in the first power o f w i t h o u t  substituting the 
awkward equivalent p^ =  {Ej^ +

d Solve the resulting equation for the energy of 
the outgoing photon.

e Now consider an important special case in 
which the incoming electron is extremely energetic, 
with an energy of, say, thousands of times its rest 
energy as measured in the laboratory. Show that this 
case the incoming electron behaves in essential re­
spects as a photon; Pa ^ - \ -  E^. Simplify your equation 
of part d to show that under these circumstances the 
outgoing photon has the energy of the incoming elec­
tron no matter what the energy of the incoming photon.

TESTS OF RELATIVITY
Note: Exercises 8-33 through 8-39 form a connected 
tutorial on tests of relativity. Some of these exercises 
depend on each other and on earlier exercises, espe­
cially Exercise 8-6.

8-33 photon energy shift due 
to recoil of emitter

Note: This exercise uses the results of Exercise 8-25.
A free particle of initial mass W2„ and initially at rest 

emits a photon of energy E. The particle (now of mass 
m) recoils with velocity v, as shown in the figure.

BEFORE O (attest)

AFTER O - - - ^  ^
E m

EXERCISE 8-33. Recoil of a particle that emits a photon.

a Write down the conservation laws in a form 
that makes no reference to velocity. Consider the case 
in which the fractional change in mass in the emission 
process is very small compared to unity. Show that for 
this special case the photon has an energy E„ =  m  ̂— 
m. For the general case show that

or

A£
X

E

2m„

b Show that this shift in energy for visible light 
(£„ ~  3 eV) emitted from atoms (mc'̂  ~  10 X 10®
eV) in a gas is very much less than the Doppler shift 
due to thermal motion (Exercise 8-25) even for tem­
peratures as low as room temperature {kT ~  1 /4 0  
eV).

8-34 recoilless processes
a  A free atom of iron ’^Fe —  formed in a so- 

called “excited state” by the radioactive decay of 
cobalt ’^Co— emits from its nucleus a gamma ray 
(high-energy photon) of energy 14.4 keV and trans­
forms to a “normal” ’^Fe atom. By what fraction is 
the energy of the emitted ray shifted because of the 
recoil of the atom? The mass of the ’^Fe atom is about 
equal to that of 57 protons.

b That not all emitted gamma rays experience 
this kind of frequency shift was the important discov­
ery made in 1958 by R. L. Mossbauer at the age of 
29. He showed that when radioactive nuclei embed­
ded in a solid emit gamma rays, some significant 
fraction of these atoms fail to recoil as free atoms. 
Instead they behave as if locked rigidly to the rest of 
the solid. The recoil in these cases is communicated to 
the solid as a whole. The solid being heavier than one 
atom by many powers of 10, these events are called 
recoilless processes. For gamma rays emitted in 
recoilless processes, the m  ̂in Exercise 8-33 is the mass 
of the entire chunk in which the iron atoms are em­
bedded. When this chunk has a mass of one gram, by 
what fraction is the frequency of the emitted ray 
shifted in this “recoilless” process?

c The gamma rays emitted from excited ’^Fe 
atoms do not have a precisely defined energy but are 
spread over a narrow energy range— or frequency 
range —  or natural line width, shown as a bell-shaped 
curve in the figure. (The physical basis for this curve is 
explained by quantum physics.) The full width of this 
curve at half maximum is denoted by Av. R. V. 
Pound and G. A. Rebka selected ’^Fe for experiments
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EXERCISE 8-34. Natural line width of photons emittedfrom^^Fe.

with recoilless processes because the fractional ratio 
A///o has the very small value 6 X for the
14.4 keV gamma ray from ’^Fe. How much is the 
natural line width, A/, o f’^Fe expressed in cycles/sec- 
ond? Compare the fractional natural line width with 
the fractional shift due to recoil of a free iron atom. 
And compare it with the fractional shift of a gamma 
ray from a recoilless process.
Reference: For a more detailed account of Mossbauer’s discovery —  
for which the German scientist was awarded the Nobel prize in 
1961 —  see S. DeBenedetti, “The Mossbauer Effect,” Scientific 
American, Volume 202, pages 7 2 - 8 0  (April I960). For the selec­
tion o f ’^Fe, see R. V. Pound and G. A. Rebka, Jr., Physical Review 
Letters, Volume 3, pages 4 3 9 -4 4 1  (1959).

Pound and Rebka's application of recoilless processes thus 
put into one’s hands a resonance phenomenon sharp in 
frequency to the fantastic precision of 6 parts in 10‘ .̂ 
Exercise 8-35 deals with detection of this radiation. 
Exercise 8-36 uses motion (Doppler shift) as a means for 
producing controlled changes of a few parts in 10^^ —  or 
much larger changes—  in the effective frequency of source 
or detector or both. To what uses can radiation of precisely 
defined frequency he put? There are many uses. For in­
stance, the effect is the basis of important techniques in 
solid-state physics, molecular physics, and biophysics. One 
can detect the change in the natural frequency of radia­
tion from ^^Fe atoms caused by other atoms in the 
neighborhood— and by external magnetic fields— and 
in this way analyze the interaction between the iron atom 
its surroundings. Here we aim at detection of various 
effects predicted by relativity.

sheet containing ^^Fe will be less at the 14.4 keV 
resonance energy than at any nearby energy. This 
process is called resonant scattering.

a Show that when a gamma ray of the resonant 
energy £„ is incident on a free iron atom initially at rest 
then the free nucleus cannot absorb the gamma ray at 
its resonant energy, because the process cannot satisfy 
both the law of conservation of momentum and the 
law of conservation of energy.

b Show that both conservation laws are satisfied 
when an iron atom embedded in a one-gram crystal 
absorbs such a gamma ray by a recoilless process, in 
which the entire crystal absorbs the momentum of the 
incident gamma ray. (“Satisfied”? For momentum, 
yes; for energy, no. However, the fractional discrep­
ancy in energy— equivalent to the fractional discrep­
ancy in frequency— is less than 6 parts in 10^  ̂ and 
therefore small enough so that the iron nucleus is 
“unable to notice” the discrepancy and therefore ab­
sorbs the gamma ray.)

8-36 measurement of Doppler 
shift by resonant 
scattering

In the experimental arrangement shown in the figure, 
a source containing excited ’^Fe nuclei emits (among 
other radiations) gamma rays of energy £„ by a recoil­
less process. An absorber containing ’^Fe nuclei in the 
normal state absorbs some of these gamma rays by 
another recoilless process and reemits this energy in 
various forms in all directions. Thus the counting rate 
on a gamma ray counter placed as shown is less for an 
absorber containing normal ’^Fe than for an equiva­
lent absorber without normal ^^Fe. Now the source is 
moved toward the absorber with speed v.

a What must be the velocity of the source if the 
gamma rays are to arrive at the absorber shifted in 
frequency by 6 parts in 10* ?̂ Express your answer in 
centimeters/second.

8-35 resonant scattering
The nucleus of normal ^^Fe absorbs gamma rays at 
the resonant energy of 14.4 keV much more strongly 
than it absorbs gamma rays of any nearby energy. The 
energy absorbed in this way is converted to internal 
energy of the nucleus and transmutes the ^^Fe to the 
“excited state.” After a time this excited nucleus 
drops back to the “normal state,” emitting the excess 
energy in various forms in all directions. Therefore the 
number of gamma rays transmitted through a thin

\  /
!\f\S\r*- AAA/- AAA/-

Source

/
Absorber Counter

EXERCISE 8-36. Resonant scattering of photons.
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b Will the counting rate of the counter increase 
or decrease under these circumstances?

c What will happen to this counting rate if the 
source is moved away from the absorber with the 
same speed?

d Make a rough plot of counting rate of the 
counter as a function of the source velocity toward the 
absorber (positive velocity) and away from rhe ab­
sorber (negative velocity).

e Discussion question: Does this method 
allow one to measure the “absolute velocity” of the 
source, in violation of the Principle of Relativity 
(Chapter 3)?

8-37 test off the gravitational 
red shifft I

A 14.4-keV gamma ray emitted from ^^Fe without 
recoil travels verrically upward in a uniform gravita- 
rional field. By what fraction will the energy of this 
photon be reduced in rising to a height z (Exercise 
8-6)? An absorber located at this height must move 
with what speed and in what direction in order to 
absorb such gamma rays by recoilless processes? Cal­
culate this velocity when the height is 22.5 meters. 
Plot the counting rate as a function of absorber veloc­
ity expected if (a) the gravitational red shift exists, and 
(b) thete is no gravitational red shift. A frequency 
shift: of A///o =  (2.56 +  0.03) X 10“ ^̂  was deter­
mined in an experiment conducted by R. V. Pound 
and J. L. Snider. You will notice that this shift is vety 
much smaller than the natural line widrh A ///, =  
6 X 10~^^ (see the figure for Exercise 8-34). There­
fore the result depended on a careful exploration of 
the shape of this line and was derived sratistically 
from a large number of photon counts.
References: Original experiment: R. V. Pound and G. A. Rebka, Jr., 
Physical Review Letters, Volume 4, pages 337-341 (I960). Im­
proved experiment: R. V. Pound and J. L. Snider, Physical Review, 
Volume 140, pages B788-B803 (1965).

8-38 test off the gravitational 
red shifft II

On June 18, 1976, a Scout D rocket was launched 
from Wallops Island, Virginia, carrying an atomic 
hydrogen-maser clock as the payload. It achieved a 
maximum altitude of 10^ meters. By means of mi­
crowave signals, its clock was compared with an iden­
tical clock at the surface of Earth. The experiment 
used continuous comparison of these two clocks as the 
payload rose and fell. Simplifying (and somewhat 
misrepresenting) the experiment, we report their re­
sult as a fractional frequency red shift at the top of the 
trajectory due ro gravitational effects of A j / /  =  
0.945 X 10“ ‘o ±  6.6 X IQ-^’.

Modify the analysis of Exercise 8-6 to make a 
prediction about this experiment and compare your 
prediction with the results of the Scout D rocket 
experiment.
References: Description of experiment and preliminary results: 
R. F. C. Vessot and M. W. Levine, General Relativity and Gravita­
tion, Volume 10, Number 3, pages 181 -204 (1979). Final results: 
R. F. C. Vessot, M. W. Levine, and others. Physical Review Letters, 
Volume 45, pages 2081-2084 (1980), Popular explanation: Clif­
ford M. Will, Was Einstein Right? (Basic Books, New York, 1986), 
pages 42-64.

8-39 test off the twin paradox
For Penny to leave her twin brother Paul behind in the 
laboratory, go away at high speed, return, and find 
herself younger than stay-at-home Paul is so contrary 
to everyday experience that it is astonishing to find 
that the experiment has already been done and the 
prediction upheld! Chalmers Sherwin pointed out 
that the twins can be identical iron atoms just as well 
as living beings. Let one iron atom remain at rest. Let 
the other make one forth-and-back trip. Or many 
round trips. The percentage difference in aging of the 
twin atoms is the same after a million round trips as 
after one round trip —  and it is easiet to measure. 
How does one get the second atom to make many 
round trips? By embedding it in a hot piece of iron, so 
that it vibrates back and forth about a position of 
equilibrium (thermal agitation!). How does one mea­
sure the difference in aging? In the case of Penny and 
Paul the number of birthday firecrackers rhat each 
sets off during their separation are counted. In the 
experiment with iron atoms one compares not the 
number of flashes of firecrackers up to the time of 
meeting but the frequency of the photons emitted by 
recoilless processes, and thus —  in effect— the num­
ber of ticks from two identical nuclear clocks in the 
course of one laboratory second. In other words, one 
compares the effective frequency of INTERNAL nu­
clear vibrations (not to be confused with the back- 
and-forth vibration of the iron atom as a whole!) as 
observed in the laboratory for (a) an iron nucleus at 
rest and (b) an iron nucleus in a hot specimen.

It is difficult to obtain an iron nucleus at rest. 
Therefore the actual experiment compared the effec­
tive internal nuclear frequency for two crystals of iron 
with a difference of temperarure AT. R. V. Pound 
and G. A. Rebka, Jr., measured that a sample 
warmed up by the amount AT =  1 degree Kelvin 
underwent a fractional change in effective frequency 
of Ay/yj, =  (—2.09 ±  0.24) X 10“ *’ (fewer vibra­
tions; fewer clock ticks; fewer birthdays; more youth­
ful!). (We use /  for frequency instead of the usual 
Greek nu, V, to avoid confusion with v for speed.)
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To simplify thinking about the experiment, go 
back to the idea that one iron atom is at rest and the 
other is in thermal agitation at temperature T; predict 
the fractional lowering in number of internal vibra- 
rions in the hot sample per laboratory second; and 
compare with experiment.

Discussion; The figure compares the effective 
“ticks” of the two “internal nuclear clocks” in the 
laboratory time dt. Note that the speed of thermal 
agitation is about the speed of light. What 
algebraic approximation suggests itself for rhe dis­

crepancy factor 1 — (1 — How much is the
deficit in number of “ticks” (for hot atom versus 
atom at rest) in the lapse of laboratory time dt? Show 
that the cumulative deficit in number of “ticks” from 
the hot atom in one second is/,(t^/2)j^g(l second) 
where (t'̂ )avg means “the time average value of the 
square of rhe atomic speed” (relative to the speed of 
light). Note that the mean kinetic energy of thermal 
agitation of a hot iron atom (mass = 5 7  mp,otoJ is
given by the classical kinetic theory of gases:

(1/2) =  (3/2) kT

Here k is Boltzmann’s factor of conversion be­
tween two units of energy, degrees and joules (or 
degrees and ergs); k =  1.38 X 10“ ^̂  joule/degree 
Kelvin {k =  1.38 X 10“ *̂  erg/degree Kelvin). How 
does the experimental result of Pound and Rebka 
compare with the result of your calculation?
References: Chalmers W. Sherwin, Physical Review, Volume 120, 
pages 17-21 (I960). R. V. Pound and G. A. Rebka, Jr., Physical 
Review Letters, Volume 4, pages 274-275 (I960).

FREE-FOR-ALL!

EXERCISE 8-39. Comparison of nuclear dock at rest with nuclear 
clock in thermal motion.

8-40 momentum without mass?
A small motor mounted on a board is powered by a 
battery mounted on top of it, as shown in the figure 
on page 274. By means of a belt the motor drives a 
paddlewheel that stirs a puddle of water. The paddle- 
wheel mechanism is mounted on the same board as 
the motor but a distance x  away. The motor performs 
work at a rate dE/dt.

a How much mass is being transferred per sec­
ond from the motor end of the board to the paddle- 
wheel end of the board?

b Mass is being transferred over a distance x at a 
rate given by your answer to part a. W hat is the 
momentum associated with this transfer of mass? 
Since this momentum is small, Newtonian momen­
tum concepts are adequate.

c Let the mounting board be inirially at rest and 
supported by frictionless rollers on a horizontal table. 
The board will move! In which direction? What hap­
pens to this motion when the battery mns down? How 
far will the board have moved in this time?

d Show that an observer on the board sees the 
energy being transferred by the belt; an observer on 
the table sees the energy being transferred partly by 
the belt and partly by the board; an observer riding 
one way on the belt sees the energy being transferred 
partly by the belt moving in the other direction and 
partly by the board. Evidently it is not always possible
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to make a statement satisfactory to all observers about 
the path by which energy travels from one place to 
another or about the speed at which this energy moves 
from one place to another!

8-41 the photon rocket and 
interstellar travel

The “perfect” rocket engine combines matter and 
antimatter in a controlled way to yield photons (high- 
energy gamma rays), all of which are directed out the 
rear of the rocket. Suppose we start with a spaceship 
of initial mass Al„, initially at rest. At burnout the 
remaining spaceship moves with speed v and has a 
mass equal to the fraction/of the original mass. For a 
given fraction / ,  we want to know the final rocket 
speed V or, better yet, the time stretch factor y =  
1/(1 — (Note: H ere ,/is  not frequency.)

a What is the total energy of the system initially? 
Let stand for the total energy of radiation after 
burnout. Find an expression for the total energy of the 
system after burnout and set up the conservation of 
energy equation.

b Similarly, set up the conservation of momen­
tum equation. What is the total momentum of the 
system initially? The momentum of the radiation at 
burnout? The momentum of the spaceship at burn­
out?

c Eliminate r̂ad between the two conservation 
equations. Show that the result can be written

7 / +  y v f ^  1

d From the definition of y, show that yv =

(y2 — \ y / 2  hence that the equation of part c can 
be written in the form

P  -  2 y f +  1 =  0

e What is the value of the fraction / =  (final 
spaceship mass)/(initial spaceship mass) for a time 
stretch factor y =  10? In your opinion, is it possible to 
construct a spaceship whose shell and payload is this 
small a fraction of takeoff mass?

f  Substitute the result of part e into the conser­
vation of energy equation in part a. Show that the 
total energy of emitted radiation is less than the mass 
of fuel consumed. Why?

g Does your analysis apply to takeoff from 
Earth’s surface? From Earth orbit? From somewhere 
else? What safety precautions apply to the backward 
blast of gamma rays?

h You are the astronaut assigned to this space­
ship. Do you want to stop at your distant destination 
star or fly past at high speed? Do you want to return to 
Earth? Do you want to stop at Earth on your return or 
merely wave in passing? Must all fuel for the entire 
trip be on board at takeoff or can you refuel at your 
destination star? From your answers to these ques­
tions, plan your trip and find the resulting fractions of 
spaceship mass to initial mass for different stages of 
your trip.

i Discussion question: From your results for 
this exercise, what are your conclusions about the 
technical possibilities of human flight to the stars?
References: Adapted from A. P. French, Special Relativity (W.W. 
Norton, New York, 1968), pages 183-184. See alsoj. R. Pierce, 
Proceedings of the IRE, Volume 47, pages 1053- 1061 (1959).
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ITY: CURVED SPACETIME 
IN ACTION

9.1 GRAVITY IN BRIEF
the mutual grip el mass and spacetime

Gravity, as we see it today, does not count as a foreign force transmitted through space 
and time. Gravity manifests the curvature o/spacetime.

Ten years after his special relativity, Einstein gave us his 1915 battle-tested and still 
standard theory of gravitation. Its message comes in a single simple sentence: Space- 
time grips mass, telling it how to move-, and mass grips spacetime, telling it how to curve.

The grip of spacetime on mass enforces a central principle of special relativity: 
conservation of energy and momentum in a smash (Figure 9-1). The coupling of mass 
and spacetime geometry, far from being the weakest force in nature, is the strongest.

Now for the back-reaction, the grip mass exerts on spacetime! What curvature does 
that grip impose on spacetime? And how does that curvature give an account of gravity 
unrivaled for scope and accuracy?

Spacetime tells mass how to move

Mass to spacetime: "Curve!'

9.2 GALILEO, NEW TON, AND EINSTEIN
Only historical judgment liberates the spirit 
from the pressure of the past; it maintains its 
neutrality and seeks only to furnish light.

— Benedetto Croce

Galileo and Newton viewed motion as properly described with respect to a rigid 
Euclidean reference frame that extends through all space and endures for all time. This

275
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BEFORE

FIGURE 9-1. spacetime grips mass, keeping an object moving straight when free. By its power, it enforces 
conservation of energy and momentum in a smash.

Newton: One global frame. 
Einstein: Many local frames.

supposed reference frame stands high above the battles of matter and energy. Within 
this ideal space of Galileo and Newton there acts a mysterious force of gravity, an 
interloper from the world of physics, a foreign influence not described by geometry.

In contrast, Einstein says that there exists no mysterious “force of gravity,’’ only the 
structure of spacetime itself. Climb into an unpowered spaceship, he says, and see for 
yourself that there is no gravity there. Physics is locally gravity-free (Chapter 2). Every 
free particle moves in a straight line at uniform speed. In a free-float (inertial) frame, 
physics looks simple. But such a frame rates as free-float in only a limited region of 
spacetime (Section 2.3) —  a fact emphasized here by repeated use of the word “local” 
in describing a free-float frame.

Complications arise in describing the relation between (1) the direction of motion of 
a particle in one local frame and (2) the direction of motion of the same particle as 
observed from a nearby local frame. Any difference between the two directions is 
described in terms of the “curvature of spacetime,” Einstein tells us. The existence of 
this curvature destroys the possibility of describing motion with respect to a single 
ideal Euclidean reference frame that pervades all space. What is simple is the geometry 
in a region small enough to look flat.

How did the views of Galileo, Newton, and Einstein develop? And what is the 
concrete substance of the strange phrase “curvature of spacetime”?
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9.3 LOCAL M OVING ORDERS FOR MASS
moving orders front the local commander, 
spacetime!

Navigation satellites near Earth drift away from “perfect” orbits because thin air and 
solar radiation pressure affect their motion. Figure 9-2 shows an experimental satellite 
that carries a “conscience” designed to assure that the same motion will be maintained

proof moss

upper boom

upper fuel tank

lower fuel tank

lower boom

FIGURE 9-2. "Conscience-guided" satellite. A satellite in orbit around Earth is subject to small 
accelerations due to solar radiation pressure and residual atmospheric drag. Uncorrected, these accelerations 
are between 1 0 ~ ‘g and 10~^g, where g is the acceleration of gravity at Earth’s surface. The acceleration 
was reduced to 5  ^  10 ~ ’̂ g for more than a  year in orbit by use of a conscience or proof mass and the 
Disturbance Compensation System (DISCOS) mounted on a  TRIAD U.S. Navy satellite. The conscience, a 
gold-platinum sphere 2 .2  centimeters in diameter, floats freely inside a  spherical housing. Any nongravita- 
tionalforce results in an incremental velocity change. The floating proof mass continues in its original state of 
motion in an ideal friction-free environment. Observing the proof mass through capacitor sensing devices, the 
satellite becomes aware that it is not keeping up with the motion demanded by the proof mass. An opposite 
vernier rocket fires long enough to bring the spaceship hack into concord with its proof mass— its conscience. 
To reduce gravitational effects of the satellite itself on the proof mass, fuel for the vernier rockets is stored in 
donut-shaped tanks placed symmetrically above and below the proof mass; power supply and radio transmit­
ter are each held at the end of a boom 2 .7 meters long on either side of the control unit. For an Earth-based 
microgravity environment, recall Figure 2-3. (Used with permission of AIAA. Journal of Spacecraft.)
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I S A A C  N E W T O N

Woolsthorpe, December 25, 1642—Kensington (London), March 20, 1727 

“The marble index of a mind forever
Voyaging through strange seas of thought, -uXon .̂''— Wordsworth

■k -k -k
“I do not know what 1 may appear to the world; but to myself I seem to have been only 
like a boy, playing on the sea-shore, and diverting myself, in now and then finding a 
smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all 
undiscovered before me.”—Newton

★  ★  ★
“Why do I call him a magician? Because he looked on the whole universe and all that 
is in it as a riddle, as a secret which could be read by applying thought to certain 
evidence, certain mystic clues which God had laid about the world to allow a sort of 
philosopher’s treasure hunt to the esoteric brotherhood. He believed that these clues 
were to be found partly in the evidence of the heavens and in the constitution of 
elements (and that is what gives the false suggestion of his being an experimental 
natural philosopher), but also partly in certain papers and traditions handed down by 
the brethren in an unbroken chain back to the original cryptic revelation in Babylonia. 
He regarded the universe as a cryptogram set by the Almighty—just as he himself 
wrapt the discovery of the calculus in a cryptogram when he communicated with 
Leibnitz. By pure thought, by concentration of mind, the riddle, he believed, would be 
revealed to the initiate.”—A'ervreit

(Reprinted by permission of the publisher. Horizon Press, from Essays in Biography by 
John Maynard Keynes. Copyright 1951.
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when it encounters these disturbances as when it moves through perfect emptiness. 
The “conscience” — called a p ro o f mass —  is a separate sphere that floats inside the 
larger ship. The proof mass undergoes no acceleration relative to the ship as long as the 
ship moves freely. When relative motion does occur, the error in the tracking must be 
due to the satellite. By small rockets the satellite gives itself a brief spurt of acceleration 
and comes back into step with the inner proof mass —  the satellite’s conscience. 
Though resistance is present, the rocket thrust overcomes it. The satellite takes the 
same course it would have taken had both resistance and thrust been absent.

As satellite and proof mass come to empty space, they fly through it in perfect step, 
without use of rockets or sensing devices. What a remarkable harmony they present! 
The inner proof mass does not see outer space. It does not touch, feel, or see the ship 
that surrounds it on every side. Yet it faithfully tracks the ship’s route through 
spacetime. Moreover, this tracking is as perfect when the proof mass is made of 
aluminum as when it is made of gold. How do proof masses —  of whatever atomic 
constitution and whatever construction —  know enough to follow a standard world­
line? Where does mass get its moving orders?

Locally, answers Einstein. From a distance, answers Newton.
Einstein says that the proof mass gets its information in the simplest way possible. It 

responds to the structure of spacetime in its immediate vicinity. It moves on a straight 
line in the local free-float frame. No simpler motion and no straighter motion can be 
imagined.

Newton says that the inner proof mass gets its information about how to move from 
a distance, via a “force of gravity.” Motion telative to what? Motion relative to an 
ideal, God-given, never-changing Euclidean reference frame that spans all of space 
and endures for all time. He tells us that the proof mass would have moved along an 
ideal straight line in this global frame had not Earth deflected it. How can this ideal 
line be seen? How sad! There is nothing, absolutely nothing, that ever moves along this 
ideal line. It is an entirely imaginary line. But it nevertheless has a simple status, 
Newton tells us, in this respect: Every satellite and every proof mass, going at whatever 
speed, is deflected away from this ideal line at the same acceleration (Figure 9-3).

Einstein says: Face it; there is no ideal background Euclidean reference frame that 
extends over all space. And why say there is, when even according to Newton no 
particle, not even a light ray, ever moves along a straight line in that ideal reference 
frame. Why say spacetime is Euclidean on a large scale when no evidence directly 
supports that hypothesis? To try to set up an all-encompassing Euclidean reference 
frame and attempt to refer motion to it is the wrong way to do physics. Don’t try to 
describe motion relative to faraway objects. Physics is simple only when analyzed 
locally. And locally the wotldline that a satellite follows is already as straight as any 
wotldline can be. Forget all this talk about “deflection” and “ force of gravitation.” 
I’m inside a spaceship. Or I’m floating outside and near it. Do I feel any “force of 
gravitation?” Not at all. Does the spaceship “feel” such a force? No. Then why talk 
about it? Recognize that the spaceship and I are traversing a region of spacetime free of 
all force. Acknowledge that the motion through that region is already ideally straight.

How can one display the straightness of the motion? Set up a local lattice of meter 
sticks and clocks, a local free-float (inertial) reference frame —  also called a Lorentz 
reference frame (Chapter 2). How does one know the frame is free-float? Watch every 
particle, check every light ray, test that they all move in straight lines at uniform speed 
relative to this frame. And having thus verified that the frame is free-float, note that 
the proof mass too moves at a constant speed in a straight line— or remains at 
rest —  relative to this local free-float frame. What could be simpler than the moving 
orders for mass: “Follow a straight line in the local free-float reference frame.” Does a 
proof mass have to know the location of Earth and Moon and Sun before it knows how 
to move? Not at all! Surrounded on all sides by the black walls of a satellite, it has only 
to sense the local structure of spacetime— right where it is —  in order to follow the 
correct track.

"Conscience-guided” satellite. 
What guides the conscience?

Physics is simple only when 
analyzed locally
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FIGURE 9-3 . In N ew ton ian  mechanics d ifferent particles going a t  different speeds are a l l  deflected aw ay  
from  the id ea l stra igh t line w ith  equa l acceleration. In  th is  respect there is no difference in  principle between 
the f a l l  o f  a  projectile a n d  the motion o f  a  sa tellite. In th is  p ic ture  o f  N ew ton 's pub lished  in  16 8 6 , cannon o f  
successively greater power m ounted on a  m ountaintop fire  out their balls horizontally. The more pow erfu l 
cannon launches a  sa tellite. The outer tw o curves show other possible sa te llite  orbits. In  brief, New ton has one 
global reference fram e, bu t w ith in  th is  reference fra m e no sa te llite  is ever gravity-free, a n d  no particle ever 
moves in  a  stra igh t line a t  constant speed. E instein, in  contrast, makes use o f  m any local regions in  each o f  
which the geometry is L orentzian  (as in  special re la tiv ity ); the law s o f  g ra v ita tio n  arise from  the lack o f  
id ea lity  in  the relation between one local region a n d  the next (gravita tion; spacetime curvature; general 
rela tiv ity).

9.4 SPACETIME CURVATURE
not one but two particles witness to gravitation

Splendid! And also simple! But isn’t Einstein’s view of motion too simple? We started 
out interested in the motion of a spaceship around Earth and in “gravitation.” We 
seem to have ended up talking only about the motion of the satellite— or the proof 
mass —  relative to a strictly local inertial reference frame, a trivially simple straight- 
line I notion. Where is there any evidence of ‘ ‘gravitation” to be seen in that? Nowhere.
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This is the great lesson of Einstein: Spacetime is always and everywhere locally 
Lorentzian. No evidence of gravitation whatsoever is to be seen by following the 
motion of a single particle in a free-float frame.

One has to observe the relative acceleration of two particles slightly separated from 
each other to have any proper measure of a gravitational effect. Separated by how 
much? That depends on the region of spacetime and the sensitivity of the measuring 
equipment. Two ball bearings with a horizontal separation of 20 meters, dropped 
from a height of 315 meters above Earth’s surface with 0 initial relative velocity, hit 
the ground 8 seconds later (24 X 10® meters of light-travel time later) with a 
separation that has been reduced by 10~^ meter (Section 2.3). Two ball bearings with a 
vertical separation of 20 meters, dropped from a height of 315 meters with 0 initial 
relative velocity, in the same 8 seconds increase their separation by 2 X 10“  ̂meter. To 
measuring equipment unable to detect such small relative displacements the ball 
bearings count as moving in one and the same free-float reference frame. No evidence 
for gravitation is to be seen. More sensitive apparams detects the tide-p roducing  
action of gravity —  the accelerated shortening of horizontal separations parallel to 
Earth’s surface, the accelerated lengthening of vertical separations. Each tiny ball 
bearing still moves in a straight line in its own local free-float reference frame. But 
now —  with the new precision —  the region of validity of the one free-float reference 
frame does not reach out far enough to give a proper account of the motion of the other 
steel ball. The millimeter or two discrepancy is the way “gravity” manifests itself.

Tidal acceleration displays gravity as a local phenomenon. No mention here of the 
distance of the steel balls from the center of Earth! No mention here of acceleration 
relative to that center! The only accelerations that come into consideration are those of 
nearby particles relative to each other, the tidal accelerations described in the preceding 
paragraph.

These relative accelerations double when the separations are doubled. The true 
measure of the tide-producing effect has therefore the character of an acceleration per 
unit of separation. Let the acceleration be measured in meters of distance per meter of 
light-travel time per meter of light-travel time; that is, in units meters/meter^ or 
1 /meter [x =  (1 /T)af-, soa =  I x j f Y  Then the measure of the tide-producing effect 
(different for different directions) has the units (acceleration/distance) or (1/meter^). 
In the example, in the two horizontal directions this quantity has the value [2(— 0.001 
m eter)/(24X  10® meter)^]/20 meter =  — 17.36X 10“ ‘̂*meter~^ and in the vertical 
direction twice the value and the opposite sign: -b 34.72 X 10“ '̂* meter"^. The 
tide-producing effect is small but it is real and it is observable. Further, it is a locally 
defined quantity. And Einstein tells us that we must focus our attention on locally 
defined quantities if we want a simple description of nature.

Einstein says more: This tide-producing effect does not require for its explanation 
some mysterious force of gravitation, propagated through spacetime and additional to 
the structure of spacetime. Instead, it can and should be described in terms of the 
geometry of spacetime itself as the cu rvatu re  o f spacetim e.

Though Einstein speaks of four-dimensional spacetime, his concepts of curvature 
can be illustrated in terms of two-dimensional geometry on the surface of a sphere.

9.5 PARABLE OF THE TW O TRAVELERS
space curvature on a sphere accounts for 
relative acceleration of travelers

Einstein’s railway coach in free fa ll.

One traveler. A, stands at the equator, ready to travel straight north. A’s companion B, 
standing against him shoulder to shoulder, wheels 90 degrees and marches straight
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FIGURE 9-4 . Travelers A  a n d  B, 
sta r tin g  out p ara lle l a n d  d ev ia tin g  nei­
ther to the le ft nor to the right, neverthe­
less f in d  themselves approaching each 
other a fter  they have traveled some d is ­
tance. Interpretation I:  Some mysterious 
force o f  " g ra v ita tio n "  is a t  work. Inter­
pre ta tion  2: They are traveling  on a  
curved surface. Figure not d raw n  to 
scale.

Curvature of Earth demonstrated 
by change in separation of two 

originally parallel paths

east. She paces off 20 kilometers along the equator. There she again turns a sharp 90 
degrees and faces straight north. Both travelers now start north and travel 200 
kilometers (Figure 9-4). In the beginning their tracks are strictly parallel. Moreover, 
no travelers could be more conscientious than they are in continuing precisely in their 
original directions. Each of them deviates neither to the right nor to the left. Yet an 
umpire sent out to measure their separation after their 200-kilometer treks finds it to 
be less than the original 20 kilometers. Why? We know perfectly well: The surface of 
the globe is curved. If they continue north, their paths will meet at the north pole.

Already at this early stage of their trip the travelers are approaching each other, 
although they had started out not approaching at all. Initially their velocity relative to 
one another was zero; now they move toward one another with a small relative 
velocity. In this sense they are slowly accelerating toward each other.

The travelers accelerate toward each other as surely as two tiny ball bearings in a 
free-fall horizontal railway coach accelerate toward each other (Figure 9-5). We 
ascribe the relative acceleration of ball bearings in the railway coach to the “tidal” 
effects of nonuniform gravitation near Earth. To be sure, the relevant picture for the 
travelers is the two-dimensional curved space of the surface of Earth, whereas what 
counts for the ball bearings is curvature of spacetime. This parallelism between the 
geometrical concept of curvature and the gravitational concept of tide-producing 
effect foreshadows Einstein’s geometrical interpretation of gravity.

The two travelers, who started out so conscientiously on parallel tracks and deviated 
neither to the left nor to the right, have been told by the umpire of distances that 
despite all precautions they are now slowly accelerating toward one another. They 
blame this development on the existence of some mysterious ‘ ‘gravitational force” that 
deflects their paths. They explore the nature of this “gravitational force.” Repeating 
the travel with bicycles, motorcycles, light cars, and heavy trucks all moving north­
ward with the same speed, they find always the same relative acceleration toward one 
another. They conclude that the “gravitational force” leads to the same acceleration of 
all objects, no matter what they are made of or how massive they are.

Learned would-be pundits analyze the motion of travelers. They say, in words 
utterly mysterious to us, “See here. You find the same acceleration for every vehicle
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TRAVELERS HEADED "NORTH" ON EARTH
FIGURE 9-5 . C o m p a r iso n  o f  th e  p a t h s  o f  n o r th w a r d  t r a v e le r s  on  E a r t h ’s  s u r fa c e  w i t h  th e  
w o r ld l in e s  o f  b a l l  b e a r in g s  r e le a s e d  s id e  b y  s id e  f r o m  r e s t  n e a r  E a r th ’s  su r fa c e . In both cases the 
" p a th ” o f  each “traveler” starts para lle l w ith  th a t o f  the second traveler (zero in i t ia l  relative velocity). In 
both cases th is  “p a th ” g radually  inclines tow ard  the centerline ( “relative acceleration”). In  both cases the 
p a th s can be accounted fo r  in  terms o f  the local curvature o f  geometry (curvature o f  E a rth ’s surface fo r  the 
travelers; curvature o f  spacetime geometry— g ra v ita tio n !— fo r  the ba ll bearings). In each diagram , 
vertica l distances are d ra w n — fo r  v iv idness— to a  different scale than  horizonta l distances. Both d ia ­
gram s suffer from  th is  a d d itio n a l imperfection: they a ttem p t to show, on the f l a t  Euclidean surface o f  th is  
page, trajectories th a t can be correctly represented only in  terms o f  a  curved geometry.

you try. This means that the ratio of gravitational mass to inertial mass is the same for 
all sorts of objects. You have made a great discovery abour mass.”

All this time we and our space-traveler friends are looking down from on high. We 
see the many treks. We watch the many measurements of distance. Through our 
intercommunication system we hear and approve as our friends on the ground 
interpret distance shortening as relative acceleration —  and relative acceleration as 
“gravitation.” But then they get into weighty discussions. They start speaking of 
“gravitation” as action at a distance. We smile. What is at issue— we know — is not 
action at a distance at all, but the geometry of curved space. All this talk about the 
identity of “gravitational mass” and “inertial mass” completely obscures the ttuth. 
Curvature and nothing more is all that is required to describe the increasing rate at 
which A and B approach each other.

Curvature alone accounts for 
relative acceleration
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9.6 GRAVITATION AS CURVATURE OF 
SPACETIME

Spacetime curvature 
demonstrated by change in 
separation of two originally 

parallel worldlines

Acceleration toward Earth: 
Totalized effect of relative 

accelerations, each particle 
toward its neighbor, in a chain of 

test particles that girdles globe

spacetime curvature accounts for 
tidal accelerations of objects

Einstein smiles, too, as he hears gravitation described as action at a distance. Curvature 
of spacetime and nothing more, he tells us, is all that is required to describe the 
millimeter or two change in separation in 8 seconds of two ball bearings, originally 20 
meters apart in space above Earth, and endowed at the start with zero relative velocity. 
Moreover, this curvature completely accounts for gravitation.

“What a preposterous claim!” is one’s first reaction. “How can such minor— and 
slow —  changes in the distance between one tiny ball and another offer any kind of 
understanding of the enormous velocity with which a falling mass hits Earth?” The 
answer is simple: Many local reference frames, fitted together, make up the global 
structure of spacetime. Each local Lorentz frame can be regarded as having one of the 
ball bearings at its center. The ball bearings all simultaneously approach their neigh­
bors (curvature). Then the large-scale structure of spacetime bends and pulls nearer to 
Earth (Figure 9-6). In this way many local manifestations of curvature add up to give 
the appearance of long-range gravitation originating from Earth as a whole.

In brief, the geometry used to describe motion in any local free-float frame is the 
flat-spacetime geometry of Lorentz (special relativity). Relative to such a local free- 
float frame, every nearby electrically neutral test particle moves in a straight line with 
constant velocity. Slightly more remote particles are detected as slowly changing their 
velocities, or the directions of their worldlines in spacetime. These changes are de­
scribed as tidal effects of gravitation. They are understood as originating in the local 
curvature of spacetime.

From the point of view of the student of local physics, gravitation shows itself not at 
all in the motion of one test particle but only in the change of separation of two or more 
nearby rest particles. “Rather than have one global frame with gravitational forces we 
have many local frames without gravitational forces. ’ ’ However, these local dimension 
changes add up to an effect on the global spacetime structure that one interprets as 
“gravitation” in its everyday manifestations.

In contrast, Newton supposed the existence of one ideal overall reference frame. For 
him, “Absolute space, in its own nature, without relation to anything external, 
remains always similar and immovable.” The ball bearing or spaceship is regarded by 
Newton as actually accelerated with respect to this ideal frame. The “gravitational 
force” that accelerates it acts mysteriously across space and is produced by distant 
objects. That the man in the spaceship finds no evidence either of the acceleration or 
the force is an accidenr of nature, according ro the Newtonian view. Pundits used to 
interpret this accident of nature as the fortuitous equality of “gravitational mass” and 
“inertial mass” or in other “ learned” ways.

In conversations with one of the authors of this book at various times over rhe years, 
Einstein emphasized his great respect for Newton and, in particular, his admiration for 
Newton’s courage and judgment. He stressed that Newton was even better aware than 
his seventeenth-century critics of the difficulties with the ideas of absolute space and 
time. To postulate those ideas was nevertheless the only practical way to get on with 
the task of describing motion in Newton’s century. In effect, Newton chopped the 
problem of motion into two parts: (1) space and time and their meaning: ideas that 
were puzzling but usable and that were destined to be clarified only 230 years later and
(2) the laws of acceleration with respect to that idealized spacetime: laws that Newton 
gave the world.
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FIGURE 9-6 . L o c a l c u r v a tu r e  a d d in g  u p  to  th e  a p p e a r a n c e  o f  lo n g -ra n g e  g r a v i ta t io n .  The
shortening o f  distance between a ny  one p a ir , A  a n d  B, o f  ha ll hearings is sm a ll when the d istance i ts e l f  is 
sm all. However, sm all separation between each ha ll hearing a n d  its  partn e r dem ands m any p a irs  to 
encompass Earth. The to ta lized  shortening o f  the circumference in  a n y  g iven  t im e — the shortening o f  one 
separation tim es the number o fseparations— is independent o f  the fineness o f  the subdivision. T h a t to ta lized  
p u llin g  in  o f  the circumference carries the whole necklace o f  masses inw ard . T h is  is free  fa l l ,  th is  is g rav ity , 
th is  is a  large scale motion interpreted as a  consequence o f  local curvature. Example:

O rig inal separation between A  a n d  B — a n d  every other pa ir: 2 0  meters
T im e o f  observation: 8  seconds
Shortening o f  separation in  th a t tim e: 1 m illim eter
Fractional shortening: 1 m illim eterf 2 0  meters =  1 1 2 0 ,0 0 0
Circumference o f  E arth  {length o f  a iry  necklace o f  ha ll hearings): 4 .0 0 3 0  X  10^ meters 
Shrinkage o f  th is  circumference in  8  seconds: 1 /2 0 ,0 0 0  X  4 .0 0 3 0  X  10^ meters =  2 0 0 1 .5  meters 
Decrease in  the distance from  the center o f  E arth  (drops by the same fa c to r  1 /2 0 ,0 0 0 ) :

1 /2 0 ,0 0 0  X  6 .3 7 1  X  10^ meters = 3 1 5  meters.

T h is  apparently large-scale effect is caused— in  E in ste in ’s p ic tu re— by the ad d itio n  o f  a  m u ltitude  o f  
sm all-scale effects: the changes in  the local dimensions associated w ith  the curvature o f  geometry (fa ilu re  of&  
to remain a t  rest as observed in  the free-float fram e associated w ith  A).

What is the source of the curvature of spacetime? Momenergy is the source. In 
Chaprer 8 we saw the primacy of momenergy in governing interactions between 
particles. Crash of mass on mass, no matter how elastic or how destructive, leaves the 
total momenergy of the system quite unaltered. By what miracle does this come about? 
Education of momenergy from birth onward to good behavior? Goodness of heart?
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HOW SPACETIME CURVATURE CARRIES INFLUENCE FROM
ONE MASS TO ANOTHER

The necklace of ball bearings (Figure 9-6) as they ap­
proach Earth, examined more closely, reveals a re­
markable feature of spacetime curvature outside a

great, essentially uniform, essentially isolated sphere 
of mass. The curvature in its character is totally “ tide- 
producing,” totally “ noncontractile.”

What do these descriptive terms mean, and how do 
we verify that they apply? We look at a cluster of ball 
bearings dotted here and there over the surface of an 
imaginary small sphere, all momentarily at rest relative 
to each other and relative to Earth. That shape, how­
ever, as the seconds tick by, changes from sphere to 
ellipsoid. How come? First let’s look at the two dimen­
sions of the sphere that lie perpendicular to each other 
but parallel to Earth's surface. Both these dimensions of 
the sphere shrink os the boll bearings converge toward 
Earth’s center. The up-down dimension of the pattern, 
however, lengthens, and twice as much. Why? Newton 
says because of the greater gravitational acceleration 
of the one nearer Earth. Einstein says because two-per­
cent stretch in that dimension compensates one-percent 
shrinkage in the other two dimensions and keeps the 
volume of the pattern unchanged. Spacetime curvature.

A n  array o f  test masses covering the surface o f  a  hollow sphere 
freely f lo a tin g  above the E a rth ’s surface w i l l  sh rink  in  two  
dim ensions a n d  lengthen in  one. The volume rem ains constant; 
only the shape changes. T h is  change is evidence o f  the noncon­
tractile , tid e -d riv in g  spacetime curvature outside Earth.

yes; but a totally noncontractile curvature. Einstein’s 
famous equation, stated in simple terms, tells us how 
spacetime curvature responds to mass:

appropriate measure of 
spacetime contractile curvature 

at any place, any time, 
in any Lorentz frame

(density of energy\  
at that locale j 

perceived in that I 
Lorentz frame /

Outside, no mass, no energy, a spacetime curvature 
that is totally noncontractile. Inside Earth, however, 
there is mass, therefore there is energy —  or in a mov-

Spacetime controls momenergy

Obedience to the eyes of a corps of bookkeepers? No, Einstein taught us. The 
enforcing agency does not lie far away. It’s close at hand. It’s the geometry of 
spacetime, right where the crash takes place. Not only does spacetime grip isolated 
mass, telling it how to move. In addition, in a crash it sees to it that the participants 
neither gain nor lose momenergy. But there is more! Spacetime, in so acting, cannot
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ing frame, energy plus energy flow —  and therefore 
spacetime curvature there has a contractile character. 
The ball bearings —  when shafts are drilled for them so 
that not one of them encounters any obstacle to free- 
float motion —  start to converge vertically as well as 
horizontally. The volume shrinks. That, overlooking de­
tails, is what we mean when we say that “mass grips 
spacetime, telling it how to curve.”

There is no Earth mass out at Moon's orbit. How then 
does Einstein’s spacetime geometry account for 
Moon’s motion? Answer: Earth’s mass imposes on 
spacetime a contractile curvature throughout Earth’s in­
terior, as a jumper’s feet impose a contractile curvature 
on a  trampoline. That contractile curvature, where the 
feet push, forces on the surrounding nontear fabric a  
corresponding lateral stretch. That effect transmits itself 
in ever more dilute measure to the ever more remote 
regions of the trampoline.

The deformation o f  the nontear tram poline fa b r ic  under the ju m p er’s fe e t a n d  
elsewhere is analogous to the nontear curvature o f  spacetime geometry inside  
E arth  a n d  elsewhere.

Likewise spacetime does not tear. Its fabric just above 
Earth’s surface experiences the same lateral contractil­
ity as it does just below the surface. Not so with the 
curvature in the two-dimensional domain defined by 
time and by direction perpendicular to Earth’s surface. 
In that one plane, curvature within Earth is contractile 
but suddenly jumps just above Earth’s surface to the 
opposite character. Hence the tide-producing charac­
ter of spacetime curvature outside Earth. A point twice 
as far from Earth’s center lies on an imaginary Earth- 
centered sphere that encompasses eight times the vol­
ume. There the tide-producing curvature experiences 
eight times the dilution and has one eighth the strength. 
Despite this rapid dilution of tide-producing power with 
distance, it has strength enough at Moon, 60 Earth radii 
away from Earth’s center, to deform Moon from sphere 
to ellipsoid, 1738.35 kilometers in radius along the 
Earth-Moon direction, 1738.15 kilometers in radius 
for each of the other two perpendicular directions.

Easy as it is to regard Earth as running the whole show. 
Moon too has its part. Like an infant standing on the 
trampoline some distance from its mother, it imposes its 
own small curvature on top of the curvature evoked by 
Earth. That additional curvature, contractile in Moon’s 
interior, has tide-driving character outside. Were the 
Earth an ideal sphere covered by an ideal ocean of 
uniform depth, then Moon would draw that ocean’s 
surface 35.6 centimeters higher than the average in two 
domains, one directly facing Moon, one directly oppo­
site to it —  simultaneously lowering those waters 17.8 
centimeters below the average on the circle of points 
midway between the two. (These low figures show how 
important are funneling and resonant sloshing in deter­
mining heights of actual ocean tides on Earth.)

The local contractile curvature of spacetime at Moon’s 
location added up along Moon’s path yields the ap­
pearance of long-range gravitation, similar to that il­
lustrated in Figure 9-6. Box 2-1 tells a little of the many 
influences that have to be taken into account in any 
fuller treatment of the tides.

maintain the perfection assumed in textbooks of old. To every action there is a 
corresponding reaction. Spacetime acts on momenergy, telling it how to move; momenergy 
reacts hack on spacetime, telling it how to curve. This “handshake” between momen­
ergy and spacetime is the origin of momenergy conservation —  and the source of 
spacetime curvature that leads to gravitation (Box 9-1).

Momenergy tells spacetime 
how to curve
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9.7 GRAVITY WAVES
gravitational energy moving at light speed

Gravity waves from 
collapsing matter

In the depths of an ill-fated, collapsing star, billions upon billions of tons of mass cave 
in and crash together. The crashing mass generates a wave in the geometry of 
space— a wave that rolls across a hundred thousand light-years of space to “jiggle” 
the distance between two mirrors in our Earthbound gravity-wave laboratory.

A cork floating all alone on the Pacific Ocean may not reveal the passage of a wave. 
But when a second cork is floating near it, then the passing of the wave is revealed by 
the fluctuating separation between the two corks. So too for the separation of the two 
mirrors. There is, however, this great difference. The cork-to-cork distance reveals a 
momentary change in the two-dimensional geometry of the surface of the ocean. The

BOX 9-2

COMPACT STELLAR OBJECTS

Three kinds of astronomical objects exist comparable in mass to Sun but very 
much smaller. Two of these have been observed; the third seems an inevita­
ble result of Einstein’s theory.

A white dwarf star is a star of about one solar mass, with radius about 5000 
kilometers. (The radius of Earth is 6371 kilometers.)Thisgives the white dwarf 
a density of approximately 10’  kilograms/meter^ (or one metric ton per cubic 
centimeter). As of 1990, approximately 1500 white dwarfs have been iden­
tified.

White dwarfs were observed and studied astronomically long before they 
were understood theoretically. Today we have come to recognize that a 
white dwarf is a star that quietly used up its fuel and settled gently into this 
compact state. The electrons and nuclei that make up the body of a  white 
dwarf are not separated into atoms. Instead, the electrons form a gas in 
which the nuclei swim. The pressure of this “cold” electron gas keeps the 
white dwarf from collapsing further.

S. Chandrasekhar calculated in 1930 that no white dwarf can be more mas­
sive than approximately 1.4 solar masses (“Chandrasekhar limit”) without 
collapsing under its own gravitational attraction. His analysis assumed the 
mix of electrons and nuclei to be unaltered under compression by a load so 
heavy, an assumption that had to be modified in later years. Today we 
recognize that enormous compressions squeeze electrons into combining 
with protons to make neutrons. At compressions near the Chandrasekhar 
limit, the electron gas transforms into a neutron gas, the interior of the star 
becomes a giant nucleus, and the whole nature of the compact object 
changes to that of a neutron star.

A neutron star has roughly the same density as an atomic nucleus, of the 
order of 10'  ̂kilograms/meter^, or one Earth mass per cube of edge length 
400 meters. The radius of a neutron star is approximately 10 kilometers.
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mirror-to-mirror distance reveals a momentary change in the three-dimensional ge­
ometry of space itself.

The idea of extracting energy from ocean waves is old. After all, the ability of a 
water wave to change a distance lets itself be translated into the ability to do work. The 
same reasoning applies ro a gravity wave. Because it can change distance, it can do 
work. Ir carries energy. Energy once resident as mass in the interior of a star has 
radiated out to us and to all the universe.

O f all the workings of rhe grip of gravity, none is more fascinating or opens up for 
exploration a wider realm of ideas rhan a gravity wave. None pushes to a higher pirch 
the art of detecting a small effect, and none gives more promise of providing an 
unsurpassable window on cataclysmic events deep inside troubled stars. Nevertheless, 
no other great prediction of Einstein’s geometric theory of graviry srands today so far 
from triumphant exploitation. As of this writing, not one of the nine ingenious

How to detect gravity waves

How often is a neutron star formed? Towards answering this still open ques­
tion we have one important lead: In our own galaxy we see one supernova 
explosion on average about every 300 years [most recent supernova in the 
Large Magellanic Cloud, a satellite structure near our galaxy, on February 
23, 1987; one seen by Kepler, October 13, 1604; one seen by Tycho Brahe, 
November 6, 1572; earlier ones: 1181 a . d . ;  July 4, 1054 a . d . ;  1006 a . d . (the 
brightest); 185 a . d . ;  and two possibles in 386 a . d . and 393 a . d . ] .  In such an 
event a star teetering on the edge of instability finally collapses. The Niagara 
Falls of infalling mass in some cases go too far and overcompress the inner 
region of the star. That region thereupon acts like a spring, or explosive 
charge, and drives off the outer portions of the star. This explains the spec­
tacular luminosity that is such a prominent feature of a supernova. The core 
that remains becomes a neutron star in some events, it is believed, in others a 
black hole.

Neutron stars were predicted in 1934 but not observed until 1968. Many 
neutron stars spin rapidly —  with a period as short as a few milliseconds. A 
neutron star typically has an immense magnetic field. When that field is 
aligned at an angle relative to the axis of spin of the star (as in Earth, for 
example), it sweeps around like a giant whisk brush through the plasma in the 
space around the star. The periodic shock to the electrons of the plasma from 
the periodic arrival of this field excites those electrons to radiate periodic 
pulses of radio waves and visible light —  both observed on Earth. Because of 
this behavior, such neutron stars are called pulsars. As of 1990, nearly 500 
pulsars have been identified.

A black hole is an object created when a star collapses to a size so small that 
strong spacetime curvature prevents it from communicating outward with the 
external universe. Even light cannot escape from a black hole, whence its 
name. No one who accepts general relativity has found any way to escape 
the prediction that black holes must exist in our galaxy. Strong evidence for 
the existence of black holes has been found, but it is not yet convincing to all 
astrophysicists. A black hole can have a mass as small as a few times the mass 
of our Sun. A black hole of three solar masses would have a “ radius” of 
about 9 kilometers. There is no theoretical upper limit to its mass.
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Gravity waves result from 
time delay

detectors built to this day has proved sensitive enough to secure any generally agreed 
detection of an arriving gravity wave.

Does any truly simple line of reasoning assure us that gravity will inescapably carry 
energy away from two masses that undergo rapid change in relative position? Yes is the 
conclusion of a little story that savors of mythology. The Atlas of our day, zooming 
through space in free float, insists as much as ever on maintaining physical fitness. He 
pumps iron, not by raising iron against the pull of Earth’s gravity, but by throwing 
apart two identical great iron spheres. Alpha and Beta. He floats between those minor 
moons and plays catch with them. Each time they fall together under the influence of 
their mutual gtavity, he catches them, absorbs their energy of infall in his springlike 
muscles, and flings them apart so that they always travel the same distance before 
returning. It’s an enchanting game, but Atlas finds that it’s a losing game. When the 
masses fly back together, they never yield up to him as much energy as he must supply 
to throw them apart again. Why not?

Say the central point in two words: time delay. Like any force that makes itself felt 
through the emptiness of space, the force of gravity cannot propagate faster than the 
speed of light. This limitation imposes a delay on the attraction between the two iron 
spheres. Alpha, on each little stretch of its outbound path, feels a pull that originated 
from Beta when the two were a tiny bit closer than they are now. The actual force that’s 
slowing Alpha is therefore a tiny bit bigger than we would judge from thinking of 
them as stationary at their momentary separation. On its return trip inbound along the 
same little stretch of path. Alpha experiences a helping pull that originated from Beta 
when the two had a separation slightly greater than its present value. The actual force 
that’s speeding Alpha inward is therefore a tiny bit less than we would judge from 
thinking of them as stationary at theit momentary separation. In each stretch of their 
outbound trip, the two masses have to do more work against the pull of gravity than 
they get back — in the form of work done on them by gravity— on the same stretch of 
path inbound. A calculable amount of energy disappears from the local scene on each 
out-in cycle of Atlas’s exercise. Yet the total energy must somehow be conserved. 
Therefore the very gravity that steals energy from Atlas and his iron, or from any two

Y ear

FIGURE 9-7 . Tw o w h irling  neutron stars fu rn ish  a  g ia n t dock, whose tim e-keeping  h a n d  is the line, 
ever-turning, th a t separates the centers o f  those tw o stars. T h a t h a n d  does not today keep the “slow ” schedule 
(stra ight horizonta l line) one m igh t have expected from  its  tim in g  a s measured in  1 9 7 4 . The dow nw ard  
sloping curve shows gra v ity -w a ve  theory's prediction o f  the shortening in  the tim e required to accum ulate any  
specified number o f  revolutions. The dots show the a c tu a l observed shortening in  th a t tim e.
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masses that rapidly change their relative position, must somehow all the time be 
transporting the stolen energy to the far-away. That inescapable theft of energy is in its 
quality, its directional distribution, and its magnitude none other than what Einstein 
had treated long before under the head of gravity radiation and what we now call 
gravity waves.

Atlas couldn’t “see” those gravity waves. Neither have we today yet succeeded in 
detecting directly the gravity waves we feel sure must be radiating from sources dotted 
here and there in the galaxy and in the universe. However, we have an exciring indirecr 
confirmation that gravity waves exist— not through their action on any receptor, bur 
through the energy they carry away from a whirling pair of neutron srars. That 
particular “binary pulsar” first revealed itself to Joseph H. Taylor, Jr., and Russell A. 
Hulse by periodic pulses of radio waves picked up on the huge disklike antenna at 
Arecibo in Puerto Rico. As one of these neutron stars spins on its axis, its magnetic field 
spins with it, giving timing comparable in accuracy to the best atomic clock ever built 
(Box 9-2). Thanks to this happy circumstance, Taylor and his colleagues have been 
able to follow the ever-shortening separation of the two stars and the ever-higher speed 
they attain as they slowly spiral in toward an ultimate catastrophe some 400 million 
years from now. The timing of the orbits gives us a measure of energy lost as the stars 
spiral in. No reasonable way has ever been found to account for the thus observed loss 
of energy except gtavitational radiation. As of September 1989, 14 years after first 
observation, this loss of enetgy agrees with the rate predicted by theory to bettet than 
one percent (Figure 9-7).

Gravity waves and pulses of gravity radiation are sweeping over us all the time from 
sources of many kinds out in space. Detecting them, however, we are no better than 
the primitive jungle dweller unable to detect and even totally unaware of the tadio 
waves that carry past her every minure of the day music, words, and messages. 
However, experimentalists are working out ingenious technology and building detec­
tor instrumentation of evet-growing sensitivity (Figures 9-8 and 9-9). Few among 
them have any doubt of their ability to detect pulses of gravity radiation from one or 
another star catastrophe by sometime in the first decade of the twenty-first century.

Gravity w aves steal energy from 
orbiting neutron stars

FIGURE 9-8 . The proposed M I T -  Caltech g ra v ity -w a ve  detector w il l  ( I )  use the beam from  a  laser (left), 
(2 ) sp lit i t  by a  device (center) analogous to a  ha lf-silvered  mirror, (3 ) send one ha lf-strength  beam to one 

fa ra w a y  m irror (top) a n d  the other to the other fa ra w a y  m irror (right), (5 ) allow  these beams to undergo 
m any m any reflections (not shown), a n d  (6 ) recombine them a t  the detector (bottom). A  g rav ity -w ave  
inciden t on E arth  w il l  s lightly shorten the 4-kilom eter d istance to the one mirror a n d  s ligh tly  lengthen the 
4-kilom eter d istance to the other mirror. T h is  relative alteration in  the p a th  length o f  the laser beams, i f  big  
enough, am plified  enough, a n d  p icked  up  by detectors sensitive enough, w il l  reveal the passage o f  the g ra v ity
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FIGURE 9-9. P ro to typ e  g r a v i ty - w a v e  d e ­
tec to r , C a l i fo r n ia  I n s t i t u t e  o f  T ech n o lo g y , 
P a s a d e n a . The laser beam is ta ilored  (lower 
right} fo r  entry in to  the beam sp litter (located 
where the two long ligh t pipes meet, ju s t  to the 
le ft o f  center in  the photograph). The mirrors a t  
the ends o f  these tw o evacuated  lig h t pipes lie  
outside the boundary o f  the photograph.

Astronomy uses signals of many kinds —  light, radio waves, and X-rays among 
them —  to reveal the secrets of the stars. Of all signals from a star, none comes out 
from deeper in the interior than a gravity wave. Among all violent events to be probed 
deeply by a gravity wave, none is more fascinating than the dance of death of two 
compact stars as they whirl around each other and undergo total collapse into . . .  a 
black hole!

9.8 BLACK HOLE
over the edge with a scream of radiation

‘Escape velocity c” implies 
black hole

A black hole is a domain whose mass is so tightly compacted that nothing can escape 
from it, not even light. Everything that falls in is caught without hope of escape 
(Figure 9-10).

To fire a missile from Moon’s surface so that it escapes that satellite’s attraction 
demands a speed of 2.3 8 kilometers per second or greater. The critical speed for escape 
from Earth — in the absence of drag from the atmosphere— is 11.2 kilometers per 
second. When the object does not rotate and is so compact that even light cannot 
escape, the “effective radius’’ or so-called “horizon radius’’ is

(effective radius)

'circumference of region' 
out of which 

 ̂ light cannot escape , 
27T

=  2 X (1.47 kilometers) X
mass of black hole '  

expressed in
, number of Sun masses j

Black hole still exerts 
“ pull” of gravity

When a star or cloud of matter collapses to a black hole it disappears from view as 
totally as the Cheshire cat did in Alice in Wonderland. The cat, however, left its grin 
behind; and the black hole — via the effect of spacetime curvature that we call 
gravity —  exerts as much “pull” as ever on normal stars in orbit around it. They are 
like participants in a formal dance with lights turned low. Only the white dress of the 
girl is visible as she whirls around in the arms of her black-suited companion. From the
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particles as yet 
undetected known 

particles gravitational and 
electromagnetic

mass
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FIGURE 9 -10 . W hatever objects f a l l  into a  black hole, they possess a t  the e n d — as seen from  outside— only 
mass, a ngu lar momentum, a n d  electric charge. N o t one other characteristic o f  a ny  in - fa llin g  object remains to 
betray i ts  p a s t— not a  ha ir. T h is  leads to the saying, “A  black hole has no h a ir .”

speed of the girl and the size of the circle in which she swirls, we know something of the 
mass of the invisible companion. By such reasoning it was possible to conclude by 
1972 that the optically invisible companion of one long-known star has a mass of 
the order of 9.5 solar masses.

This remarkable object came first to attention because in December 1971 the 
Uhuru orbiting X-ray observatory detected X-ray pulsations with time scales from one 
tenth to tens of seconds from an object located in the Cygnus region close to the known 
star. Why does it give off X-rays? And why does the intensity of the X-rays vary 
rapidly from instant to instant? The gas wind from the visible companion varies from 
instant to instant like the smoke from a factory chimney. This gas, falling on a compact 
object, gets squeezed. To picture the how and why of this squeeze, look from a 
low-flying plane at the streams of automobiles converging from many directions on a 
football stadium for a Saturday afternoon game. The particles and the gas are pushed 
together as surely as the cars in the traffic. The compression of the traffic raises the 
temper of the driver, and the compression of the gas raises its temperature as air is 
heated when pumped in a bicycle pump. However, because the gas falls from an object 
of millions of kilometers in size to one a few kilometers across, the compression is so 
stupendous that the temperature rises far above any normal star temperature, and 
X-rays come off.

The time scale of the fluctuations in X-ray intensity depends on the size of the object 
that is picking up the star smoke, a size less by a fantastic factor than that of any normal 
star. Could the object be a white dwarf (Box 9-2)? No, because such a star would be

Cygnus X-1: A black hole?



2 9 4  CHAPTER 9 GRAVITY; CURVED SPACETIME IN ACTION

-C ^ ^ B L E  92T ]> -

BLACK HOLES FOR WHICH THERE WAS 
SUBSTANTIAL EVIDENCE AS OF SEPTEMBER 1989

(Uncertainties in masses are of the order of 20 to 50 percent.)

Astronomical designation 
of black hole

Mass
(in solar masses)

Cygnus X-1 9.5
LMC X-1 2.6
AO 620-00 3.2
LMC X-3 7.0
SS433 4.3
Black hole at center of our galaxy 3.5 X 10*

Black hole at center of 
our galaxy?

Q uasar energy output from matter 
swirling into black hole?

High-efflciency conversion of 
gravitational energy to radiation

visible. A neutron star? No, because even matter compressed so tightly that it is 
transformed to neutrons cannot support itself against gravity if it has a mass much over 
two solar masses. No escape has been found from concluding that Cygnus X-1 is a 
black hole. This great discovery transformed black holes from pencil-and-paper 
objects into a lively and ever-growing part of modern astrophysics (Table 9-1).

Much attention went in the 1980s to a presumptive black hole with a mass of about 
three and a half million times the solar mass and a horizon radius of about ten million 
kilometers. It floats at the center of our galaxy, rhe Milky Way. Around it buzz visible 
stars of the everyday kind, most of them fated to fall eventually into that black hole 
and increase its mass and size. That stars close to the center of our galaxy go around as 
fast as they do is one of the best indicators we have for the presence, and one of the best 
measures we have for the mass, of the central black hole, which is itself invisible.

In contrast to dead solitary black holes, the most powerful source of energy we know 
or conceive or see in all rhe universe is a black hole of many millions of solar masses, 
gulping down enormous amounts of matter swirling around it. Maarten Schmidt, 
working at the Mount Palomar Observatory in 1956, was the first to uncover evidence 
for these quasistellar objects, or quasars, starlike sources of light located not billions of 
kilometers but billions of light-years away. Despite being far smaller than any galaxy, 
the typical quasar manages to put out more than a hundred times as much energy as 
our own Milky Way, with its hundred billion stars. Quasars, unsurpassed in brilliance 
and remoteness, we call lighthouses of the heavens.

Observation and theory have come together to explain in broad outline how a 
quasar operates. A black hole of some hundreds of millions of solar masses, itself built 
by accretion, accretes more mass from its surroundings. The incoming gas, and 
stars-converted-to-gas, does not fall in directly, any more than the water rushes 
directly down the bathtub drain when the plug is pulled. Which way the gas swirls is a 
matter of chance or past history or both, but it does swirl. This gas, as it goes round and 
round, slowly makes its way inward to regions of ever-stronger gravity. Thus com­
pressed, and by this compression heated, the gas breaks up into electrons —  that is 
negative ions —  and positive ions, linked by magnetic fields of force into a gigantic 
accretion disk. Matter little by little makes its way to the inner boundary of this 
accretion disk and then, in a great swoop, falls into the black hole, on its way crossing 
the horizon, the surface of no return. During that last swoop, hold on the particle is 
relinquished. Therefore, the chance is lost to extract as energy the full 100 percent of 
the mass of each infalling bit of matter. However, magnetic fields do hold onto the 
ions effectively enough for long enough to extract, as energy, several percent of the
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A L B E R T  E IN S T E IN
Ulm, Germany, M arch 14, 1 8 7 9 — Princeton, N ew  Jersey, A p r il  18, 1955

“Newton himself was better aware of the weaknesses inherent in his intellectual 
edifice than the generations which followed him. This fact has always roused my 
admiration.’’

* ★  ★
“Only the genius of Riemann, solitary and uncomprehended, had already won its 
way by the middle of the last century to a new conception of space, in which space 
was deprived of its rigidity, and in which its power to take part in physical events 
was recognized as possible.’’

★  ★  ★
“All of these endeavors are based on the belief that existence should have a 
completely harmonious structure. Today we have less ground than ever before for 
allowing ourselves to be forced away from this wonderful belief.’’

mass. In contrast, neither nuclear fission nor nuclear fusion is able to obtain a 
conversion efficiency of more than a fraction of a percent. Of all methods to convert 
bulk matter into energy, no one has ever seen evidence for a more effective process than 
accretion into a black hole, and no one has even been able to come up with a more 
feasible scheme for one.

Of all the features of black hole physics in action, none is more spectacular than a 
quasar. And no lighthouse of the skies gives more dramatic evidence of the scale of the 
universe.
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9.9 THE COSMOS
a final crunch?

Expanding universe; Evidence for 
big bang beginning

“ O p en ” universe expanding 
forever?

O r “ closed” universe that 
recontracts to crunch? 

An open question!

The more distant quasars and galaxies are, the greater the speed with which they are 
observed to be receding from us. This expansion argues that somewhere between ten 
and twenty billion years ago the universe began with a big bang, a time before which 
there was no time.

We see around us relics of the big bang, not only today’s rapidly receding galaxies 
but also today’s abundance of the chemical elements — some among them still 
radioactive, the “still warm ashes of creation” (V. F. Weisskopf) —  and today’s 
greatly cooled but still all-pervasive “primordial cosmic fireball radiation.” We now 
believe that in the first instants of its life, the entire universe filled an infinitesimally 
small space of enormous density and temperature where matter and energy fused in a 
homogeneous soup. Immediately the universe began expanding. After about 10“  ̂
seconds it had cooled enough that subatomic particles condensed from the matter-  
energy soup. In the first three minutes after the big bang, neutrons and protons 
combined to make heavier elements. Eons later stars and galaxies formed. Never since 
has the universe paused in its continual spread outward.

Will the universe continue expanding forever? Or will its expansion slow, halt, and 
turn to contraction and crunch (Table 9-2), a crunch similar in character but on a far 
larger scale than what happens in the formation of a black hole? Great question! No 
one who cares deeply about this question can fail to celebrate each week that week’s 
astrophysical advances: instruments, observations, conclusions.

We have come to the end of our journey. We have seen gravity turned to float, space 
and time meld into spacetime, and spacetime transformed from stage to actor. We 
have examined how spacetime grips mass, telling it how to move, and how mass grips 
spacetime, telling it how to curve. O f all the indications that existence at bottom has a 
simplicity beyond anything we imagine today, there is none more inspiring than the 
unsutpassed simplicity of gravity as we now see it.

REFERENCES
Extended portions of this chapter were copied (and sometimes modified) from 
John Archibald W h e e l e r , Into Gravity and Spacetime (Scientific Ameri­
can Library, a division of HPHLP, New York, 1990).

For details of Galileo’s views on motion, see Galileo Galilei, Dialogues Concerning 
Two New Sciences, originally published March 1638; one modern translation is 
by Henry Crew and Alfonso de Salvio (Northwestern University Press, Evanston, 
111., 1950).

How Newton came only in stages to the solution of the problem of fall is told 
nowhere with such care for the fascinating documentation as in Alexander Koyre, 
“A Documentary History of the Problem of Fall from Kepler to Newton,” 
Transactions of the American Philosophical Society, Volume 45, Part 4 (1955).

Keynes quotation under Newton portrait: Reprinted by permission of the pub­
lisher, Horizon Press, from Essays in Biography by John Maynard Keynes, 
copyright 1951.



THE COSMOS 2 9 7

A CLOSED-MODEL UNIVERSE 
COMPATIBLE WITH OBSERVATION

Radius at phase of maximum 
expansion

18.9 X 10  ̂ light-years or 
1.79 X 10^  ̂meters

Time from start to maximum size 29.8 X 10  ̂years or 
2.82 X 10^  ̂meters

Radius today 13.2 X 10^ light-years

Time from start to today’s size 10.0 X 109 years

Time it would have taken from start 
to today’s size if the entire expansion 
had occurred at today’s slowed rate of 
expansion

20.0 X 109 years

Ptesent expansion rate An extra increment of recession 
velocity of 15.0 kilometers/second for 
every extra million light-years of 
remoteness of the galactic cluster

Fraction of the way around the 3- 
sphere universe from which we can in 
principle receive light today

113.2 degrees
---------- -----  = 6 2 .9 %

180 degrees

Fraction of the matter in the 3-sphere 
universe that has been able to 
communicate with us so far

74.4%

Number of new galaxies that come 
into view on average every three days

One!

Average mass density today 14.8 X 10“ ^̂  kilogram/meter^

Average mass density at phase of 
maximum expansion

5.0 X 10“ ^̂  kilogram/meter^

Rate of increase of volume today 1.82 X 10®̂  meters^/second

Amount of mass Alconv “  5.68 X 10’  ̂kilograms 
In geometric units:
M =  =  4.21 X 1026 njeters

Equivalent number of suns like ours 2.86 X 1023

Equivalent number of galaxies like ours 1.6 X 1012

Equivalent number of baryons 
(neutrons and protons)

3.39 X 10«9

Total time, big bang to big crunch 59.52 X 109 years

/
/  /
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Figure 9-2: Figure and data from Journal of Spacecraft, Volume 11 (September 
1974), pages 637-6 4 4 , published by the American Institure of Aeronautics and 
Astronautics. Data also from D. B. De Bra, APL Technical Digest, Volume 12: 
pages 14-26 .

Figure 9-3 from Philosophiae Naturalis Principia Mathematica (Joseph Streater, 
London, July 5, 1686); Morre translation into English revised and edited by 
Florian Cajori and published in two paperback volumes (University of California 
Press, Berkeley, 1962). This is also the source of rhe quote in Section 9.6: 
“Absolute space, in its own namre, without relation to anything external, remains 
always similar and immobile.”

Three quotations under the Einstein picture come from Albert Einstein, Essays in 
Science (Philosophical Libraty, New York, 1934).

Quotation in Section 9.6: “Rather than have one global frame with gravitational 
forces we have many local frames without gravitational forces.” Steven Schutz, in 
January 1966 final examination in course in relativity, Princeton University.

For an exciting and readable overview of the experimental proofs of Einstein’s 
general relarivity theory, see Clifford M. Will, Was Einstein Right? Putting 
General Relativity to the Test (Basic Books, New York, 1986). In particular 
(Chapter 10, pages 181-206), he describes at some length the emission of 
gravity waves by the binary pulsar system studied by Joseph H. Taylor, Jr., and 
Russell A. Hulse.



ANSW ERS T O  O D D -N U M B ER ED  EXERCISES

chapter 1
1 - 1 a 10.2 meters b  270 meters c 10^ meters d  10"* kilometers ~  2 times
Boston-San Francisco distance l-3 a  2.6 X 10*  ̂ meters b  5.3 X  10“  ̂ sec­
ond c 1.85 X 10“ *° hours d  52 weeks e 5.4 X  10° furlongs l-5 a  4 years 
b  4 /5  the speed of light =  2.4 X  10® meters/second l-7 a  4 meters b  V7 
meters =  2.65 meters c Vl5 meters =  3.87 meters d 2 meters e 4 meters (same 
as part a) l-9 a  2 X  10’ years h v — 0.995 c 6.33 X 10"* years, v =  
0.9995 d  r /=  1 -  5 X 10“ ** =  0.99999999995 1-1 la  2 X  10“ "* second
b  133 half-lives; (1/2)*’’ ~  lO” "*** c 3 half-lives d  zero space separation (creation 
and decay occur at the same place in rocket frame) e 3 half-lives =  4.5 X 10“ ° 
second

chapter 2
2 -  la  hit the ceiling b same answer c Rider cannot tell when elevator reaches
top. 2-3 Set clock to 10 seconds, start when reference flash arrives. 
2 -5a  Experiment in progress for 1/0.96 =  1.04 meters of time. In this time, test 
particle falls 6 X  10“ *̂  meters, about 10“  ̂ diameter of a nucleus, b  3 X  10“ "* 
second, 10’ meters 2-7 3.6 millimeters; 19.7 seconds. Spacetime region: 20 
meters X  20 meters X  20 meters of space X 59 X  10® meters of time 2-9a  de­
crease (think of each ball bearing in an elliptical orbit around the center of Earth) 
b  apart c No, you cannot distinguish rising from falling. At the top you notice 
nothing inside the coach. 2-11 =  0.735 thespeedoflight. 2 - 13a Effec­
tive time of fall: 4.67 seconds. Net velocity of fall: 1284 meters/second. b  Angle of 
deflection: 4.3 X 10“ ° radian =  2.5 X  10“ "* degree =  0.88 second of arc

chapter 3
3 - la  6 0  seconds b 4 5  seconds against the current, 2 2 .5  seconds with the current,
6 7 .5  seconds round trip c No 3-3 If different kinds of clocks ran at different rates 
in a free-float rocket frame, then this difference could be used to detect the relative 
velocity of the laboratory from inside the rocket, which violates the Principle of 
Relativity. This does not mean that the common rate of rocket clocks will be the same 
as measured in rocket and laboratory frames. 3 -5 a 11.5 light-years b  9 .4 3
years c v =  0 .6  d  8  years =  the interval between the two events. 3-7 The 
bullet misses. Coincidence of A and A ' (event 1) and firing of the bullet at the other 
end of spaceship 0 (event 2) cannot be simultaneous in both rocket reference frames. 
The right panel of the figure is wrong. Consistent with the Train Paradox (Section 
3 .4 ), spaceship O' (standing in for the train frame) will observe the bullet to be fired 
before coincidence of A and A ', thus accounting for the fact that bullet misses. 
3-9a sin yy =  (in meters/meter) b  siny/ ~  \j/ ~  10“ "* radian =  21 seconds 
of arc c sin y / and tan y / are both approximately equal to y / for small y/. Therefore the 
difference between the two predictions cannot be used to distinguish between relativ­
istic and nonrelativistic ptedictions. d  in a direction 0 .5 2 4  radians =  3 0  degrees 
ahead of transverse 3 - l l g ( l )  =  10“ ^, r'buUet “  2 X 10“ °. Their product is 
2 X 10“ *’, very small compared with 1; thetefore we expect t'buiiet to be the sum of 
t'buUct ^tid the form verified in everyday experience at low speeds.
(2) Vb,ji„ =  2 4 / 2 5  =  0 .9 6  (3) I'buiiet =  t'ught =  +  1 ("<) t'buUet =  t'light =  “  1 •
Yes, expected from the Principle of Relativity. 3-1 3 a  0.32 meters = 1 .1  nanosec­
ond b  6.0 X 10’ periods c No shift would imply the speed of light is the same for 
the frame of Earth going one way around Sun as compared with frame of Earth going 
the opposite direction around Sun. d dc =  — (2 /n^){/^l/T)dn and dc/c =  2

299



dn/n  For d n =  'iY .  10“  ̂ and n =  6.0 X 10’, we have the maximum value of 
d c /c=  1 X 10“ ® (sign not important). Hence dc ^  3 meters/second is the maxi­
mum change in the speed of light that could have escaped detection in this very 
sensitive experiment. 3-15a visual distance apart =  time lapse between 
images =  (1 — v)Ac, visual speed of approach =  =  v /{ l  ~  v)- r '^ p ^  =
4 when =  4 /5 ; r'approach “  99 when v — 0.99 b  visual distance apart =  vAt-, 
time lapse between images =  (1 +  v)At\ visual speed of recession =  ~
(1 +  for t'approach =  4 when v =  4 /5 , then =  4 /9  =  0.44; for t '.p p ^  =  
99 when V =  0.99, then J'rccede ”  0.497 3-17a Light leaves E one meter of time
earlier than light from Gin order to enter the eye at the same time. In this time the cube 
moves V meter of distance, equal to x in the top right figure, b  The angle <f) is given 
by the expression sin (f) =  v. For v ~ *  0, this visual angle of rotation goes to zero, as 
we experience in everyday life. F o r > 1, this visual angle of rotation goes to 90 
degrees, and the cube shows us its back side as it passes overhead, c The word 
“really” is not appropriate; each mode of observation is valid; some will be more 
useful than others for different applications. (Requested speech to each observer not 
included here.) d The “cube” will look sheared, with top EF pulled backward a 
distance x  with respect to bottom GH in the left panel.

special topic
L -la  =  3/17 =  0.176 for speed of Super 6 times speed of light h v ^ =  1 / 
3 =  0.333 for infinite speed of Super L-3b 128days e (l) 0.1 meter of time; too 
small for either wristwatch or electronic clock (2) about 1 O'* meters of time; too small 
for wristwatch but easily detected by electronic clock (3) distance is 10*  ̂meters, or 
about 6.7 times the Earth-Sun distance. L-5d =  0.944 L-11 The man­
hole is tilted, so it passes over the meter stick without collision. L-13a At the 
beginning and the end of their trip (and all during their trip), Dick and Jane are 
separated by 12 light-years as measured in the Earth frame. Final velocity: v =  3/4. 
Aging of each astronaut =  proper time along either worldline =  sum of the space- 
time intervals along each segment of either worldline =  Vl5 +  V l24-V 7 years =  
10 years, b  Yes. Yes. c (l) Jane stops accelerating 13.6 years earlier than Dick.
(2) 30 years (3) 30 years (4) 43.6 years (5) Dick: 50 years old. Jane: 63.6 years 
old. (6) 18.1 lightyears, which is just /  =  1.51 times their 12-light-year separation 
measured in the Earth frame by Mom and Dad. (d)(1) Yes (2) Yes Yes
(3) Jane’s (4) Yes. No. (5) It’s the old story: relativity of simultaneity, in this case 
the fact that Dick and Jane stop accelerating simultaneously only in the Earth frame, 
e Then, by symmetry, Dick will be older than Jane in their final rest frame. All the 
numbers will otherwise be the same, f  Then they will start and stop simultaneously 
in Earth frame and also in the final rocket frame; they will be the same age at these 
stopping events in both frames. L-15c For the extreme relativistic case when

^  1, then > 1 also.
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chapter 4
4 -la  11.6years b 18.6years c30.2years d  7 .67years e l4 .67years f  22.34 
years g  5.75 light-years h  7.67 years, 5.07 years i 14.67 years, 30.2 — 5.1 =  
25.1 years 4-3a The engineer is wrong, b  Frequency of oscillation increases by 
V2 when voltage doubles, c frequency in cycles/second ~  f ~  (.qVJSmL^Y^^, 
where m and q are mass and charge of the electron, I/, is the voltage applied, and L  is 
the width of the box =  1 meter, d  Minimum round-trip time across box at the 
speed of light is 2L/c s o f ^  =  c/2L. e For the Newtonian K g io n , f / f^  =  {qV J  
(2wc^)]^/^. For the extreme relativistic region, f / f ^  =  1. The quantity qV„ is a 
measure of electron potential energy at the wall or electron kinetic energy at the screen.



We expect the Newtonian analysis to be correct when this energy of motion is very 
much less than the rest energy mc^. The extreme relativistic analysis will be correct 
when qVo is very much greater than mc' .̂ The crossover occurs (the two dashed curves 
intersect) where qV„ ^  2mc^ or ~  10^ volts, f For low speeds, the ratio

will follow the Newtonian curve. At extreme relativistic speeds, the proper time 
for one period —* 0 and the proper frequency infinity.

chapter 5
5 -  l a ( l )  1 year (2 ) 1.94years (3) 0.87 year (4 ) 3.81 years b 5.20yearsc solid­
line traveler will be younger 5-3a event A  is at {x, t) =  (0,0); event B is at (0,1); 
event C isa t(1.5, 3 .5)or(— 1.5, 3 .5 );even tD isat(3 ,6 )o r(—3,6) b  eventD isat 
(x, t) =  (0, 0); event C is at (0, —2); event B is at (0, —4); event A  is at (—0.75,
— 5.25) or (4-0.75, — 5.25) c =  +  0.6 d  Yes 5-5d  3136 cycles/sec- 
ond e 31.4 cycles/second 5-7 Hint: As with most paradoxes in relativity, the 
solution has to do with the relativity of simultaneity.

chapter 6
6 -  la  Events 1 an d  2: (1) Proper time: 4 meters (2) Yes (3) Yes (4) No 
Events 1 an d  3: (1) Proper distance: 4 meters (2 ) No (3 ) No (4) Yes E v en ts2 
an d  3: (1) zero (2 ) Yes (3) No (4) No b  v^i =  3 /5  in 4- x-direction for 
both 6 -3a  Set t '  =  0 in the first inverse Lorentz transformation equation (L-11) 
and solve for . b  Set x ̂  =  0 in the second equation (L-11) and solve fot .
(Why does the result look so funny?) 6-5a Yes, explosion. (Sorry!) b  No change 
in prediction. (The impact at A and activation of the detonation switch are spacelike 
events; the laser pulse cannot connect them.)

chapter 7
7 -  la  [5w, V24»?, 0, 0} b  [w, 0, 0, 0] c [Vl0»?, 0, 0, 3»«] d [5 m ,0 ,— 'l24m,0]
e [10 m, 2.66 m, 5.32 7.98 »?}. 7-3a  0.05 milligram b O . l  milligram
7-7a  wristwatch time: 32 seconds; Earth time: 1000 centuries b  E/m  =  10^ .̂ 1.7 
million metric tons. 7-9a Eg =  9 units b =  V32 units =  5.66 units
c  mg =  7 units d  greater: m^ — 15 units >  4- Wg =  9 units 7-1 la  proton:
938 MeV; electron: 0.511 MeV b  P i^  ^  0.12. Proton kinetic energy at limit ~  6 
MeV. Electron kinetic energy at limit ~  3.4 X 10~^ MeV =  3.4 keV. Yes, designer 
of color TV tubes (electron kinetic energy — 25 keV) must use special relativity.

ANSWERS TO ODD-NUMBERED EXERCISES 3 0 1

chapter 8
8-la  approximately 35 X 10“ ® kilograms =  35 micrograms b  approximately 
600 kilograms. More, c approximately 6 X 10^  ̂seconds or about 2 million years! 
Chemical burning in Eric’s body produces large quantities of waste products. Elimi­
nation of these products carries away mass enormously faster than mass is carried away 
as energy. 8-3a Force is approximately 3 X 10“  ̂ newtons, or the weight of 
3 X 10“  kilograms. You should not be able to feel it. b  pressure on a perfectly 
absotbing satellite == 5 X 10“  ̂newton/meter^; on a perfectly reflecting satellite == 
9 X 10“  ̂newton/meter^; somewhere in between for a partially absorbing surface. 
Total enetgy absorbed/meter^, not color of the incident light, determines pres­
sure. c acceleration approximately 10“  ̂g d  particle radius approximately 10~® 
meter, independent of the distance from Sun 8-7 density approximately 5 X 
10̂ ® kilograms/meter^ =  5 X 1 0 ’ grams/centimeter^, or 50 million times the den-
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sity of water! 8-9 m^)/{2m) 8-1 la  From conservation equa­
tions, show that cos (/) >  1, which is impossible, b  If the total momentum is zero 
after the collision, it must be zero before the collision. But the alleged single photon 
before the collision cannot have zero momentum. Therefore the reaction is 
impossible. 8-13 2Ec =  E^-\- {Ey^ — and 2Ep =  E ^ ~  (E ^  —
If the particle is at rest, then Eĵ  =  m and E ^=  Ep =  m/2. 8-15a =  w(£ -b
m)l\E + m -  (E  ̂ -  cos 0c] 8-17a 1.8 TeV b £ «  1700 TeV
8-19e No 8-21 When the bulb is seen way ahead, its light is very intense and 
radically blue-shifted. While still seen ahead, there is an angle of observation (de­
pending on the speed) at which the light is red, but dim. As the bulb is seen to pass the 
observer, its light is infrared and very dim. As the bulb is seen to retreat into the 
distance, its light is extremely dim and radically red-shifted. 8-23a v =  0.38 
b 13 X 10^ years c Allowance for gravitational slowing will decrease the estimated 
time back to the start of the expansion. 8-25 l ^ f / f  ~  The
observed frequency will increase for molecules approaching the observer and decrease 
for molecules receding from the observer. The overall effect— at temperatures for 
which Newtonian expressions are valid —  is to produce a spread of frequencies 
approximated by the expression above (“Doppler line broadening”). 8- 
21 E ' =  m/2, E =  m, (f) =  30 degrees. 8-35a The incident gamma ray (with 
excitation energy £ ) imparts a small kinetic energy K  to the iron atom, for which 
Newtonian expression is valid: K =  p'^/2m =  E'^/2m, since p =  E {os the gamma 
ray. Then (energy of recoil)/(energy for excitation) =  K /£  ~  £/(2w) =  1.4 X 
10“ .̂ But fractional resonance width (6 X 10“ *̂ ) is smaller than this by a factor of 
almost a million, so the iron nucleus cannot accept the gamma ray and conserve 
energy, b  One gram is about 10^  ̂atoms. If the m in the above equation increases by 
the factor 10^ ,̂ then the energy of recoil is a factor 10^  ̂smaller, and the nucleus will 
not notice the residual mismatch in energy. 8-37 A / / / =  — gz/eY, v =  0.7 X 
10“® meter/second towards emitter 8-39 A //( / ,A T )  =  (3/2)/^/(wc^) ~  
1.2 X 10“ '^ per degree.
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Abbott, James, 135 (Exercise 4-1) 
aberration of starlight, 81 (Exercise 3-9) 
absolute elsewhere, 181
“absolute” space and time (Newton), 160, 284 
abuse of the concept of mass, 244-251 (Section 8.8) 
acceleration, relative, as witness to gravity, 30-36 (Sec­

tions 2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6) 
acceleration-proof clocks, 152 
active future, 182
addition of velocities, 82-84 (Exercise 3-11), 103-110 

(Secrion L.7)
Aging, Principle of Maximal, 150 
Akihito, Emperor of Japan, 138 
American Civil War, 25 
Andromeda galaxy

Enterprise in, 106-107 (Box L-2) 
trip to by rocket, 22-23 (Exercise 1-9) 
trip to by Transporter, 23 (Exercise 1-10) 

angles, transformation of, 114-115 (Exercise L-6) 
annihilation, positron-electron, 237-238, 242-243 

(Sample Problem 8-4), 260 (Exercises 8-14, 8-15) 
appearance, visual, of relarivistic objects, 64, 92-93 (Ex­

ercise 3-17)
Arecibo radio antenna (Puerto Rico), 291 
arrow of momenergy, 191-195 (Section 7.2) 
autobiography of a phoron, 184-185 (Exercise 6-4) 
available interaction energy, 261 (Exercise 8-17)

backyard zoo of particles, 235 (Box 8-1) 
bad clock, 112-113 (Exercise L-2) 
barn and pole paradox, 166 (Exercise 5-4)
Barrlett, Sreven, 19
Bay of Fundy, tides in, 32-33 (Box 2-1)
Berman, Eric, 254 (Exercise 8-1) 
beta (Greek p), symbol for speed, 41, 253 
Betrayal, Great, 108-109 (Box L-1) 
black hole, 289 (Box 9-2), 292-295 (Section 9.8) 

as source of neutrinos, 80 (Exercise 3-8) 
bomb

fission, 249
hydrogen (fusion), 248-249 
Super, 108-109 (Box L-1) 

bounce, free-float, 45 (Exercise 2-2)
Braginsky, Vladimir, 36, 223
broadening of spectral lines, Doppler, 264 (Exercise 8-25) 
bulb

flickering, paradox of, 186-187 (Exercise 6-7) 
speeding, 264 (Exercise 8-21)

c (speed of lighr), see light speed
Caesar, Julius, 106-107 (Sample Problem L-2)

cannonball, human, 45 (Exercise 2-1)
Canopus, trip to, 121-134 (Chapter 4) 
cat, Cheshire, 292
causaliry, light speed limit on, 171 (Section 6.1), 180-183 
center of momentum frame, 246-251 
Cerenkov radiation, 80-81 (Exercise 3-8)
Chandrasekhar, S., 288 
Chandrasekhar limir, 288-289 (Box 9-2) 
chemistry, relativistic, 254 (Exercise 8-2)
Civil War, American, 25 
Cleoparra, 228 
clock

acceleration-proof, 152 
atomic, test of twin effect, 131 
bad, 112-113 (Exercise L-2) 
construction of, 78 (Exercise 3-3) 
light-flash, 12 
reference, 37

clock paradox, see Twin Paradox 
clocks

latricework of, 37-39 (Secrion 2.6), 45-46 (Exer­
cises 2-3, 2-4)

plane of agreement of, 120 (Exercise L-15) 
run at different rates in gravitational field, 118 (Ex­

ercise L-13)
“run slow?”, 76-77 (Box 3-4) 

collapse, gravitational, 288, 292-295 (Section 9.8) 
colliders, 261-262 (Exercise 8-17) 
collision, 221-252 (Chapter 8) 

analyzing, 239 (Box 8-2) 
elastic, 222, 240-241 (Sample Problem 8-3) 
inelastic, 222-223 
solving problems, 239 (Box 8-2) 

comet, 35
communication, time delay in, 39-40 
communications storm, 48 (Exercise 2-11) 
compact stellar objects, 288-289 (Box 9-2) 
components of momenergy, 195- 199 (Section 7.3) 

energy, 201-206 (Section 7.5) 
momentum, 199-200 (Section 7.4)

Compton, Arthur Holly, 229
Compton scattering, 229, 231, 267-268 (Exercise 8-29) 

examples of, 268 (Exercise 8-30) 
inverse, 269-270 (Exercise 8-32) 

computer size, 22 (Exercise 1-8) 
cone, light, partition in spacetime, 177- 183 (Section 6.3) 
conscience-guided satellite, 277-279 
conservation laws, see energy; momentum; momenergy 
conserved, defined, 208-209 (Box 7-3) 
constant, defined, 208-209 (Box 7-3)
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contracting train paradox, 187-188 (Exercise 6-8) 
contraction, Lorentz, 63-65 (Seaion 3.5), 126-127 

(Section 4.7)
for cosmic rays, 215-216 (Exercise 7-7) 
described by stretch factor, 157 
how it occurs, 119-120 (Exercise L-14) 
or rotation?, 92-93 (Exercise 3-17) 

conversion factors
for energy, 203, 250
miles to meters, 2, 16, 58-59 (Box 3-2)
for momentum, 200
seconds to meters, 6, 12, 16, 58-59 (Box 3-2) 

conversion of mass to energy, 237-244 (Section 8.7), 
254 (Exercise 8.1)

cosmic rays, 160, 215-216 (Exercise 7-7) 
cosmos, 296-297 (Section 9.9) 
creation of proton-antiproton pair by an electron, 261 

(Exercise 8-16) 
curvature

of Earth, 281-283 (Section 9.5)
equation, Einstein’s, 286
of spacetime, 280-287 (Sections 9.4, 9.5, 9.6)

Daytime surveyor, 1 -4  (Section 1.1), 16-17 (Box 1-1) 
decay

mu meson, 23-24 (Exercise 1-11) 
pi-naught meson, 267 (Exercise 8-28) 
pi-plus meson, 24 (Exercise 1-12) 
positronium, 260 (Exercise 8-13) 

defleaion of starlight by Sun, 50-51 (Exercise 2-13) 
density of companion of Sirius, 258-259 (Exercise 8-7) 
detonator paradox, 185-186 (Exercise 6-5) 
deuterium, combined with helium, 237 
Dicke experiment, 36, 48-50 (Exercise 2-12) 
dimension, transverse, invariance of, 65-67 (Section 3.6) 
distance

invariance of, 4, 17 
proper, 174

dog and passenger paradox, 25-26 
Dog Star (Sirius), 135 (Exercise 4-1), 258-259 (Exercise 

8-7)
Doppler shift

along x-direction, 114 (Exercise L-5), 263 (Exercise 
8-18)

at limb of Sun, 264 (Exercise 8-22)
E =  mi?- from, 264-265 (Exercise 8-26) 
equations, 263 (Exercise 8-19) 
line broadening, 264 (Exercise 8-25) 
measurement of by resonant scattering, 271-272 

(Exercise 8-36)
Twin Paradox using, 264 (Exercise 8-24) 

down with relativity!, 79 (Exercise 3-6)
DUMAND experiment, 80 (Exercise 3-8)
dwarf, white, 258-259 (Exercise 8-7), 288 (Box 9-2)

E = m?, 203, 206, 250
from Doppler shift, 264-265 (Exercise 8-26)

Earth
curved, 281-283 (Section 9.5) 
mass in units of meters, 258 
surface of as a free-float frame, 46 (Exercise 2-5) 

Eigenzeit, 11; ree also proper time 
Einstein, Albert

admiration for Newton, 284, 295 
curvature equation, 286 
eliminate gravity, 28 
epigram, iii
equivalence of energy and mass, 250, 254-258 

(Exercise 8-5)
and Galileo and Newton, 275-276 (Section 9.2) 
and gravity, 275-298 (Chapter 9) 
happiest thought of life, 25, 44 
picture and quotes, 295 
special relativity, 5 
Train Paradox, 62-63 

Einstein puzzler, 78 (Exercise 3-2) 
elastic collision, 222, 240-241 (Sample Problem 8-3) 
electrodynamics, quantum, 185 (Exercise 6-4) 
electron, 235 (Box 8-1)

creation of proton -  antiproton pair by, 261 (Exercise 
8-16)

electron-positron annihilation, 237-238, 242-243 
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15) 

electron-positron pair production, see photon 
electrons, fast, 215 (Exercise 7-6) 
elsewhere, absolute, 181 
Emperor Akihito, 138 
Emperor Hirohito, 137 
emptiness of spacetime, 56-57 (Box 3-1) 
encounter, particle, 239 (Box 8-2) 
energy, 196, 213 (Table 7.1)

conserved in a collision, 1 8 9 -1 9 0  (Section 7.1), 
207, 2 2 2 -2 2 3  (Section 8.2), 239 (Box 8.2) 

conversion of mass to, 2 3 7 -2 4 4 , (Section 8.7), 254 
(Exercise 8-1)

interaction, 261 (Exercise 8-17) 
kinetic, 201, 203, 206
Newtonian, low-velocity limit, 190, 203, 205 (Box

7- 2)
and mass, 201, 203, 206, 250-251, 254-258 

(Exercise 8-5)
production of, in Sun, 242-245 (Sample Problem

8- 5)
quantities related to, 213 (Table 7-1) 
rest, 201, 203, 250
shift of, due to recoil of emitter, 270 (Exercise 8-33) 
threshold, 236, 259 (Exercise 8-12), 261 (Exercise 

8-16)
as “time” part of momenergy, 201-206 (Section 7.5)
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transformation of, 215 (Exercise 7-5) 
in unit of mass, 190, 203 
without mass (photon), 228-233 (Section 8.4), 

273-274 (Exercise 8-40) 
energy of light, 230
energy of photon and frequency of light, 268-269 (Exer­

cise 8-31)
Engelsberg, Stanley, 45-46 (Exercise 2-4)
Enterprise, Starship, 106-107 
Eotvos, Baron Roland von, 36
equivalence of energy and mass, 250, 254-258 (Exercise 

8-5)
ether theory of light propagation, 84, 88 
Euclidean 3-vector, 192 (Box 7-1)
Euclidean geometry, 8, 11, 126, 143, 151, 172, 177,

192 (Box 7-1), 198, 279 
event, 10, 16

and interval, 9 -11 (Section 1.3) 
locating, with latticework of clocks, 37-39 (Section 

2 .6)
not owned by any frame, 43 
reference, 38 

events
relation between, 11, 172 — 177 (Section 6.2)
time of, 38, 137-139 (Section 5-1) 

evidence, experimental, for Twin Paradox 131-134 (Sec­
tion 4.10)

expanding universe, 82 (Exercise 3-10), 264 (Exercise 
8-23), 296-297 (Section 9.9) 

experimental evidence for Twin Paradox, 131-134 (Sec­
tion 4.10), 272-273 (Exercise 8-39)

fast electrons, 215 (Exercise 7-6) 
fast protons, 214-215 (Exercise 7-4) 
faster than light?, see light, faster than?
Federation, 108-109 (Box L-1)
Feynman, Richard, 1 
firing meson, 110 (Sample Problem L-3) 
fission, 237-238 

bomb, 249
Fizeau experiment, 120 (Exercise L-16) 
flash, reference, 38
flickering bulb paradox, 186- 187 (Exercise 6-7) 
floating to Moon, 25-26 (Section 2.1) 
force of gravity, eliminate, 26-29 (Section 2.2) 
four times light speed, 89 (Exercise 3-15) 
four-vector, momenergy as, 191- 195 (Section 7.2) 
frame

center of momentum, 246-251 
Earth, 46 (Exercise 2-5) 
free-float, see free-floar frame 
inertial, see free-float frame 
laboratory, 5, 41 
local, see free-float frame

Lorentz, see free-float frame 
reference, 5; see also free-float frame 
rocket, 41-43 (Section 2.9) 
super-rocket, 69, 71, 140-142 

free float, 25-45 (Chapter 2) 
free-float bounce, 45 (Exercise 2-2) 
free-float (inertial) frame, 26-29 (Section 2.2) 

defined, 31
Earth surface as, 46 (Exercise 2-5) 
extent of, near Earth, 30-34 (Section 2.3), 46 (Ex­

ercise 2-6), 47 (Exercise 2-8), 285 
extent of, near Moon, 46-47 (Exercise 2-7) 
local, 30-34 (Section 2.3), 284 
rocket, 41-43 (Section 2.9) 
stripped down, 121-122 (Section 4.2) 
super-rocket, 69, 71, 140-142 
and test of twin effect, 133 
touring spacetime without, 160-162 (Section 5.9) 
verifying, 41, 279
what is same in different, 60-62 (Section 3.3) 
what is not same in different, 56-60 (Section 3.2) 

frequency of light and energy of a photon, 268-269 
(Exercise 8-31)

Fundy, Bay of, 32 — 33 (Box 2-1) 
fusion, 237-238 
fusion bomb, 248-249 
future, active, 182

Galilean principle of relativity, 53-55 
Galilean transformation, 113 (Exercise L-3)
Galilei, Galileo

and gravitational acceleration, 36
and Newton and Einstein, 275-276 (Seaion 9.2)
picture and quotes, 54
and Leaning Tower of Pisa, 36
and Principle of Relativity, 53-55
and tides, 32

gamma (Greek y), stretch factor, 99, 155-160 (Section 
5.8)

gamma rays, 237; see also photon
General Conference on Weights and Measures, 12, 58
general relativity, 275-298 (Chapter 9)

needed for Twin Paradox?, 132 (Box 4-1) 
when required, 34, 35, 133, 276, 281 

geometry
Euclidean, 8, 11, 126, 143, 151, 172, 177, 192 

(Box 7-1), 198, 279 
curved space, 280-281 (Section 9.4), 
curved spacetime 284-287 (Section 9.6)
Lorentz, 8, 11, 126, 143, 151, 172, 177, 192 

(Box 7-1), 198, 284 
gigaflop, 22 (Exercise 1-8) 
gravitation

effect of on clocks, 118 (Exercise L-13)
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as curvature of spacetime, 284-287 (Section 9.6) 
tutorial in Newtonian, 258 (Exercise 8-6) 

gravitational attraction of system containing photons, 257 
gravitational collapse, 288, 292-295 (Section 9.8) 
gravitational radiation, 288-292 (Section 9.7) 
gravitational red shift, 258 (Exercise 8-6) 

test of, 272 (Exercises 8-37, 8-38) 
graviton, 153, 176 
gravity

as curved spacetime, 284-287 (Section 9.6) 
in brief, 275 (Section 9.1) 
eliminate, 28-29 (Section 2.2) 
radiation, 288-292 (Section 9.7) 
relative acceleration as witness to, 30-36 (Sections 

2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6) 
waves, 288-292 (Section 9.7)

Great Betrayal, 108-109 (Box L-1)
Great Pyramid, 209
grid, paradox of skateboard and, 116-117 (Exercise L-12)

h, Planck’s constant, 265, 268-269 (Exercise 8-31) 
handle showing invariant magnitude of momenergy vec­

tor, 198
headlight effect, 115 (Exercise L-9) 
heat

as system property, 224 
weighing, 223

helium in Sun, 242-245 (Sample Problem 8-5) 
Himalaya Mountains, 48-49 
Hirohito, Emperor of Japan, 137 
hole, black, 289 (Box 9-2), 292-295 (Section 9.8) 

as source of neutrinos, 80 (Exercise 3-8)
Horwitz, Paul, 186 (Exercise 6-6)
Hubble, Edwin, 264
Hubble constant, 264
Hubble time, 264
Hull, Penny, 19, 264, 272
Hulse, Russell A., 291
human cannonball, 45 (Exercise 2-1)
hydrogen bomb, 248-249
hydrogen burning in Sun, 242 -  245 (Sample Problem 8-5)
hydrogen molecule ion, 233
hyperbola

invariant, 143 (Section 5.3), 173-174 
momenergy, 198

identically accelerated twins paradox, 117-118 (Exercise 
L-13)

index of refraction and speed of light, 185 (Exercise 6-4) 
inelastic collision, 222-223 
inertia, 31, 189
inettial frame, see free-float frame 
integrity of photon, 259 (Exercise 8-11) 
interaction energy, available, 261 (Exercise 8-17) 
interferometer

Fizeau, 120 (Exercise L-16)

Kennedy-Thorndike, 86-88 (Exercise 3-13) 
Michelson-Morley, 84-86 (Exercise 3-12) 
verifying free-float frame using, 46 (Exercise 2-5) 

interstellar travel, 274 (Exercise 8-41) 
interval, 6

and event, 9-11 (Section 1.3) 
invariance of, see invariance of interval 
as lightlike relation between events, 175-177 
as spacelike relation between events, 11, 173-174 
as timelike relation between events, 11, 172-173 

invariance of distance, 4,17 
invariance of interval, 6 -7 , 17, 18

for all free-float frames, 71-73 (Section 3.8) 
preserves cause and effect, 180-183 
proved, 67-70 (Section 3.7) 
and spacetime hyperbola, 143 (Section 5.3), 173, 174 
and spacetime map, 143 (Section 5.3) 
used in derivation of the Lorentz transformation, 102 

invariance of mass, 197, 246 
invariance of momenergy, 194, 198, 210 
invariance of speed of light, 60; 86-88 (Exercise 3-13) 
invariance of transverse dimension, 65-67 (Section 3.6) 
invariant, defined, 208-209 (Box 7-3) 
invariant hyperbola, 143 (Section 5.3), 173, 174 
inverse Compton scattering, 269-270 (Exercise 8-32) 
inverse Lorentz transformation, 102-103 (Section L.6)

Japan, 27, 96-97, l6 l
Japan Microgravity Center (JAMIC), 27 (Figure 2-3) 
Julius Caesar, 106- 107 (Sample Problem L-2)

K"''-meson, 72 (Sample Problem 3-2)
Kamisunagawa, 27
Kennedy-Thorndike experiment, 86-88 (Exercise 3-13)
Kepler, Johannes, 32
kinetic energy, 201, 203, 206
kinked worldline, 152- 155 (Section 5.7)
Klingons, 108-109 (Box L-1)
Krotkov, Robert V., 36

laboratory frame, 5, 41
lattice clocks, synchronizing, 37-38, 45-46, (Exercises 

2-3, 2-4)
latticework of clocks, 37-39 (Section 2.6)
Law of Addition of Velocities, 82-84 (Exercise 3-11), 

103-110 (Section L.7)
laws, conservation, see energy, momentum; momenergy 
Laws, Kenneth L., 77 
Leaning Tower of Pisa, 36 
length

mass in units of, 258 (Exercise 8-6) 
time in units of, 11-13 (Section 1.4) 

length along a path, 147- 148 (Section 5.5) 
length contraction, see Lorentz contraction 
less is more, 154-155 (Sample Problem 5-1), 163-164 

(Exercise 5-1)
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light
deflection of by Sun, 50-51 (Exercise 2-13) 
frequency of and energy of a photon, 268-269 

(Exercise 8-31)
gravitarional red shift of, 258-259 (Exercises 8-6, 

8-7)
pressure of, 254 (Exercise 8-3), 255 
rocket propelled by, 274 (Exercise 8-41) 
speed of, see lighr speed 
See also photon

light, faster rhan?, 74-75 (Box 3-3), 96-99 (Section 
L.2), 108-109 (Box L-1), 122-123 (Section 4.3) 

four times the speed of light?, 89-90 (Exercise 3-15) 
superluminal expansion of quasar 3C273?, 90-92 

(Exercise 3-16)
things that move faster than light, 88-89 (Exercise 

3-14) 
light bulb

flickering, 186-187 (Exercise 6-7) 
speeding, 264 (Exercise 8-21) 

light cone as partition in spacetime, 177- 183 (Section 6.3) 
light-flash clock, 12
lightlike relation between events, 172-177 (Section 6.2) 
light propagation, ether theory of, 84, 88 
light speed

as conversion factor, 6, 12, 16, 58-59 (Box 3-2), 
200, 203, 250

index of refraction and, 185 (Exercise 6-4) 
invarianr magnitude of, 60 (Kennedy-Thorndike 

experiment), 86-88 (Exercise 3-13) 
isotropic (Michelson-Morley experiment), 84-86 

(Exercise 3-12)
as limit on causality, 171 (Section 6.1), 180-183 
as limit on observation, 39-40 
See also light, faster than? 

light-second, 11-13 (Section 1.4) 
light-year, 12
limb of Sun, Doppler shift at, 264 (Exercise 8-22) 
limits of Newtonian mechanics, 34, 113-114 (Exercise 

L-4), 217 (Exercise 7-11) 
line, world, see worldline 
line broadening, Doppler, 264 (Exercise 8-25) 
linear acceleraror, Stanford, 215 (Exercise 7-6) 
local inertial frame, see free-float frame 
local moving orders for mass, 277-280 (Section 9.3) 
local time, see proper rime; interval 
locating events with latticework, 37-39 (Section 2.6) 
Lorentz, Hendrik, 5
Lorentz contraction, 63-65 (Section 3.5), 126- 127 

(Section 4.7)
for cosmic rays, 216 (Exercise 7-7) 
described by strerch factor, 157 
how ir occurs, 119-120 (Exercise L-14) 
or rotarion, 92-93 (Exercise 3-17)

Lorentz frame, see free-float frame

Lorentz-FitzGerald contraction hypothesis, 88 
Lorentz geometry, 8, 11, 126, 143, 151, 172, 177, 192 

(Box 7-1), 198, 284
Lorentz interval, 6; see also interval; invariance of interval 
Lorentz transformation, 95-111 (Special Topic) 

equations, 102 
form of, 100 (Section L.4) 
inverse equations, 102-103 (Section L.6) 
for momenergy componenrs, 215 (Exercise 7-5) 
usefulness of, 95 (Secrion L.l) •

manhole, paradox of rising, 116 (Exercise L-11) 
map, spacetime, see spacetime map 
mapmaking

in space, 10, 21-22 (Exercise 1-6) 
in spacetime, 164-166 (Exercise 5-3)

mass
abuse of the concept of, 244-251 (Section 8.8)
change in nuclear, 237-238
conversion of to enetgy, 237-244 (Section 8.7),

254 (Exercise 8-1)
created by material parricle, 234-236 (Section 8.6) 
created by photon, 233-234 (Section 8.5) 
and energy, 201, 203, 206, 250-251, 254-258 

(Exercise 8-5)
energy in unit of, 190, 203
energy without (photon), 228-233 (Section 8.4)
invariance of, 197, 246
local moving orders for, 277-280 (Section 9-3) 
loss by Sun of, 242-245 (Sample Problem 8-5) 
as magnitude of momenergy 4-vector, 195, 197 
momentum in unit of, 190, 200 
momentum without?, 273-274 (Exercise 8-40) 
photon used to create, 233-234 (Section 8.5) 
proof, 277, 279 
“relativistic,” 250-251 
“rest,” 251
as unit of length, 258 (Exercise 8-6) 
use and abuse of the concept of, 244-251 (Section 

8 .8 )
mass of photon, 230
mass of system of particles, 214 (Exercise 7-2), 224-228 

(Section 8.3), 247 
Maximal Aging, Principle of, 150 
maximum speed of walking, 186 (Exercise 6-6) 
mechanics

Newtonian, 113-114 (Exercise L-4), 192 (Box 
7-1), 217 (Exercise 7-11) 

relarivistic, 192 (Box 7-1) 
megaflop, 22 (Exercise 1-8) 
meson

decay of pi-naught, 267 (Exercise 8-28) 
firing, 110 (Sample Problem L-3) 
time stretching with, 23-24 (Exercise 1-11), 24 

(Exercise 1-12), 72-73 (Sample Problem 3-2)
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meter
defined, 58-59 (Box 3-2) 
of rime, 11-13 (Section 1.4) 
as unit of mass, 258 (Exercise 8-6) 

meter stick, tilted, 115-116 (Exercise L-10)
Michelson -  Morley experiment, 84-86 (Exercise 3-12) 
microgravity, 27 (Figure 2-3), 277 (Figure 9-2) 
Minkowski, Hermann, 15 
mile

defined, 58-59 (Box 3-2) 
as sacred unit, 1 -4  

minus sign, 6 -8 , 26, 190, 197 
minute, unit of distance and time, 11-13 (Section 1.4) 
momenergy

as 4-vector, 191, 192 (Box 7-1) 
analogy of to tree, 210 
arrow, 191-195 (Section 7.2) 
components of, 195-199 (Section 7.3), 204 

(Sample Problem 7-3)
conservation of, 189-190 (Seaion 7.1), 207-210 

(Section 7.6), 247 
defined, 191-195 (Section 7.2) 
energy as “time” part of, 201-206 (Section 7.5) 
handle showing invariant magnitude, 198 
invariance of, 194, 198, 210 
magnitude of is mass, 195, 197 
momentum as “space” part of, 199-200 (Section

7.4)
quantities related to, 213 (Table 7-1) 
tree, analogy of, 210
transformation of components of, 215 (Exercise 7-5) 
units of, 194, 195, 200, 203 

momentum, 196, 213 (Table 7.1) 
components of, 196
conserved in a collision, 189- 190 (Section 7.1), 

207, 222-223 (Section 8.2), 239 (Box 8.2) 
derived from conservation law, 217-219 (Exercise 

7-12)
of light, 230
Newtonian expression for, 190, 200
as “space” part of momenergy, 199-200 (Section

7.4)
transformation of, 215 (Exercise 7-5) 
in unit of mass, 190, 200 
without mass?, 273-274 (Exercise 8-40) 

momentum-energy 4-vector, see momenergy 
Moon, 25-26 (Section 2.1), 32-33 (Box 2-1)
Moral Principle, Wheeler’s First, 20 
Mossbauer effect, 270 
Minkowski, Hermann, 15
more is less, 154-155 (Sample Problem 5-1), 163-164 

(Exercise 5-1)
moving orders for mass, local, 277-280 (Seaion 9.3) 
muons, time stretching with, 23 (Exercise 1-11)

nanosecond, 5
Neptune, images from, 20 (Exercise 1-2) 
neutral or unreachable region, 182 
neutrino

described, 235 (Box 8-1) 
detection of, 80 (Exercise 3-8) 

neutron, described, 235 (Box 8-1) 
neutron star, 288-289 (Box 9-2) 

and gravity waves, 290-291 
Newton, Isaac, 275-280

absolute space and time, 160, 284 
Einstein’s admiration for, 284, 295 
First Law of Motion, 31
and Galileo and Einstein, 275-276 (Section 9.2) 
picture and quotes, 278 

Newtonian mechanics, 192 (Box 7-1)
First Law of Motion, 31 
gravitational theory, tutorial, 258 (Exercise 8-6) 
limits of, 34, 113-114 (Exercise L-4), 217 (Exer­

cise 7-11)
Nighttime surveyor, 1 -4  (Section 1.1), 16-17 (Box 1-1) 
nuclear excitation, 259 (Exercise 8-8)

observer, 39-40 (Section 2.7) 
oozing!, 12
oscillator, relativistic, 135-136 (Exercise 4-3) 
oscilloscope writing speed, 89 (Exercise 3-14)

pair production by photon(s), 233-234 (Section 8.5), 
259 (Exercises 8-11, 8-12)

Parable of the Surveyors, 1 -4  (Section 1.1), 16-17 
(Box 1-1)

Parable of the Two Travelers, 281-283 (Seaion 9.5) 
paradoxes

contracting train, 187-188 (Exercise 6-8) 
detonator, 185-186 (Exercise 6-5)
Einstein’s train, 62-63 
flickering bulb, 186-187 (Exercise 6-7) 
four times light speed, 89 (Exercise 3-15) 
identically accelerated twins, 117-118 (Exercise 

L-13)
passenger and dog, 25-26
pole and barn, 166 (Exercise 5-4)
rising manhole, 116 (Exercise L-11)
mnner on the train, 168 (Exercise 5-7)
scissors, 88 (Exercise 3-14)
skateboard and grid, 116-117 (Exercise L-12)
space war, 79-80 (Exercise 3-7)
tilted meter stick, 115-116 (Exercise L-10)
See also Twin Paradox

particle, test, 36 (Section 2.5), 47-48 (Exercise 2-10) 
particles

backyard zoo of, 235 (Box 8-1) 
creation of, 234-236 (Section 8.6), 261-262 (Ex­

ercises 8-16, 8-17)
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creation of by photons, 233-234 (Section 8.5), 
259-260 (Exercises 8-11 and 8-12) 

encounter, 239 (Box 8-2) 
measuring speed of, 40-41 (Section 2.8) 
system of, 214 (Exercise 7-2), 221 (Section 8.1), 

224-228 (Section 8.3), 244-251 (Section 8-8) 
timelike wotldline of, 172 
used to create mass, 234-236 (Section 8.6) 
virmal, 56-57
wotldline of, 143- 147 (Section 5.4) 

partition in spacetime, light cone as, 177- 183 (Section 6.3) 
passenger and dog paradox, 25-26 
passive past, 182
path, length along, 147—148 (Section 5.5)
Peace Treaty of Shalimar, 108- 109 (Box L-1) 
Philoponus, John, of Alexandria, 36 
photon, 228-233 (Section 8.4), 246

from annihilation, 237-238 (Section 8.7) 
autobiography of, 184-185 (Exercise 6-4) 
braking, 259 (Exercise 8-9)
Compton scattering of, 229, 231, 267-270 (Exer­

cises 8-29, 8-30, 8-32)
creation of particle-antiparticle pair using, 233- 

234 (Section 8.5)
energy of, 228-233 (Section 8.4), 268-269 (Exer­

cise 8-31)
energy measurement of, 254 (Exercise 8-4) 
energy shift of due to recoil of emitter, 270 (Exercise

8-33)
gravitational red shift of, 258-259 (Exercises 8-6 

and 8-7)
integrity of, 259 (Exercise 8-11) 
mass of, 228-231 (Section 8.4) 
momentum of, 230
pair production by, 233-234 (Section 8.5), 259- 

260 (Exercises 8-11, 8-12) 
resonant scattering of, 271-272 (Exercises 8-35, 

8-36)
rocket and interstellar travel, 274 (Exercise 8-41) 
used to create mass, 233-234 (Section 8.5) 

physicist and the traffic light, 263-264 (Exercise 8-20) 
pi-naught meson, decay of, 267 (Exercise 8-28) 
pipes, speeding (thought experiment), 66 
pi-plus mesons, time stretching with, 24 (Exercise 1-12) 
Pisa, Leaning Tower of, 36 
place, fundamental to surveying, 9, 16 
plane of agreement of clocks, 120 (Exercise L-15)
Planck, Max, 229
Planck’s constant, 265, 268-269 (Exercise 8-31) 
plumb bob, deflection of by Himalaya Mountains,

48-49
Poincare, Henri, 5 -6
pole and barn paradox, 166 (Exercise 5-4)
polyelectron, 233
positron, 233-235

positron-electron annihilation, 237-238, 242-243 
(Sample Problem 8-4), 260 (Exercises 8-14, 8-15) 

positron-electron pair production, 233-234 (Section
8.5), 259 (Exetcises 8-11, 8-12) 

positronium, decay of, 260 (Exercise 8-13) 
practical synchronization of clocks, 45-46 (Exercises 2-3, 

2-4)
pressure of light, 254 (Exercise 8-3), 255 
principle of invariance of distance, 4, 17 
Principle of Maximal Aging, 150 
Principle of Relativity, 53-60 (Sections 3.1, 3.2, 3.3) 

examples of, 61-62 (Sample Problem 3-1), 78 
(Exercise 3-4)

Galilean, 5 3 -5 5
used in proof of invariance of interval, 73 

proof mass (conscience), 277, 279 
proper clock, 10
proper distance, 174, 184 (Exercise 6-3) 
proper time, 10, 184 (Exercise 6-3)

along a worldline, 148- 152 (Section 5.6) 
tau as symbol of, 155 

proton, described, 235 (Box 8-1) 
proton -  antiproton pair, creation of, 236 
protons, fast, 214-215 (Exercise 7-4) 
pulsar, 289 
puppy, 224
puzzler, Einstein, 78 (Exercise 3-2)
Pyramid, Great, 209 
Pythagorean theorem, 2, 7

quantum electrodynamics, 185 (Exercise 6-4) 
quasar, 90-92 (Exercise 3-16), 114 (Exercise L-5), 

294-295

radar speed trap, 166- 168 (Exercise 5-5) 
radiation, Cerenkov, 80-81 (Exercise 3-8) 
radiation, gravitational, 288-292 (Section 9.7) 
radius of a black hole, 292 
railway coach

rising, 47 (Exercise 2-9)
and tidal accelerations, 30-34 (Section 2.3), 281 

ray, gamma, see photon 
ray, X-, see photon
rays, cosmic, 160, 215-216 (Exercise 7-7) 
recoilless processes, 270-271 (Exercise 8-34) 
recoil of emitter, energy shift due to, 270 (Exercise 8-33) 
red shift, gravitational, 258 (Exercise 8-6), 272 (Exercises 

8-37, 8-38) 
reference clock, 37 
reference event, 38 
reference flash, 38
reference frame, 5; see also free-float frame 
refraction, index of, and speed of light, 185 (Exercise 6-4) 
regions of spacetime, 34-36 (Section 2.4), 171-183 

(Chapter 6)
relations between events, 172-177 (Section 6.2)
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relative acceleration as witness to gravity, 30-36 (Sec­
tions 2.3, 2.4), 280-287 (Sections 9.4, 9.5, 9.6) 

relative synchronization of clocks, 130 
relativistic chemistry, 254 (Exercise 8-2)
“relativistic” mass, 250-251 
relativistic mechanics, 192 (Box 7-1) 
relativistic momentum, 217-219 (Exercise 7-12) 
relativistic oscillator, 135-136 (Exercise 4-3) 
relativity

general, 34, 35, 132 (Box 4-1), 133, 276, 281 
principle of, 53-62 (Sections 3.1, 3.2, 3.3), 78 
special, 5, 18, 73, 78 (Exercise 3-1), 79 (Exercise 

3-6), 131-134 (Section 4.10), 270-273 (Exer­
cises 8-33 to 8-39)

relativity of simultaneity, 62-63 (Section 3.4), 128-131 
(Section 4.9)

and contraction of length, 64 
See also paradoxes

resonant scattering, 271 (Exercise 8-35)
measurement of Doppler shift by, 271-272 (Exer­

cise 8-36)
rest energy, 201, 203, 250 
“rest mass,” 251 
Riemann, G. F. B., 295
“rigid body” not an invariant concept, 116-117 (Exer­

cise L-12), 119-120 (Exercise L-14) 
rising manhole paradox, 116 (Exercise L-11) 
rising railway coach, 47 (Exercise 2-9) 
rocket frame, 41-43 (Section 2.9) 
rocket, photon, and interstellar travel, 274 (Exercise 8-41) 
rods, latticework of, 37-39 (Section 2.6)
Roll, Peter G., 36
rotation or contraction?, 92-93 (Exercise 3-17)
Rumford, Count (Benjamin Thompson), 223
Ruml, Frances Towne, 29
runner on the train paradox, 168 (Exercise 5-7)

sacred unit
mile, 1 -4  
second, 5 -7  

Satellite (dog), 26 
satellite

conscience-guided, 277-279 
pressure of light on, 254 (Exercise 8-3) 

scattering
Compton, 229, 231, 267-270 (Exercises 8-29, 

8-30, 8-32)
resonant, 271-272 (Exercises 8-35, 8-36) 

scissors paradox, 88 (Exercise 3-14)
Schmidt, Maarten, 294 
second

defined, 58-59 (Box 3-2) 
as sacred unit, 5 -7
as unit of distance and time, 11-13 (Section 1.4) 

Shalimar, Peace Treaty of 108-109 (Box L-1)

Sheldon, Eric, 19
shift, see Doppler shift; red shift
Shurdiff, William A., 19, 77, 198, 213
simultaneity,

relativity of, 62-63 (Section 3-4), 64, 128-131 
(Section 4.9)

and transverse plane, 66-67 
See also paradoxes

Sirius, density of companion of, 258-259 (Exercise 8-7)
skateboard and grid paradox, 116-117 (Exercise L-12)
Smith, Richard C., 19
Sommerfeld, Arthur, 53
solar constant, 242, 254 (Exercise 8-3)
solar wind, 245
space

“absolute” (Newton), 284 
as different from time, 18 
is ours!, 123-124 (Section 4.4) 

spacelike relation between events, 11, 172-177 (Section 
6 .2)

space travel, practical, 135 (Exercise 4-1) 
space war, 79-81 (Exercise 3-7) 
spacetime

as absolute elsewhere, 181
active future of, 182
emptiness of, 56-57 (Box 3-1)
exploded view of regions of, 182 (Figure 6-5)
“Et m . . . ?”, 106-107 (Sample Problem L-2) 
light cone as partition of, 177- 183 (Seaion 6.3) 
Lorentz geometry of, 8, 192 (Box 7-1) 
mapmaking in, 164-166 (Exercise 5-3) 
neutral region of, 182 
overview of, 1-19 (Chapter 1) 
passive past of, 182
regions of, 34-36 (Section 2.4), 171- 183 (Chap­

ter 6)
surveying, 5 -8  (Section 1.2)
touring without tefetence ftame, 160-162  (Section

5.9)
trekking through, 137-163 (Chapter 5) 
units of, 20-21 (Exercises 1-2 and 1-3) 
unity of, 7, 15-18 (Section 1.5) 
unreachable region of, 182

spacetime curvamre, 280-287 (Sections 9.4, 9.5, 9.6) 
contractile, 286-287 (Box 9-1) 
equation (Einstein), 286 
gravitation as, 284-287 (Section 9.6) 
noncontractile, 286-287 (Box 9-1) 

spacetime diagram, see spacetime map 
spacetime displacement as 4-vector, 191-194 
spacetime geometry, see spacetime; spacetime curvature 
spacetime interval, see interval; invariance of interval 
spacetime map, 22 (Exercise 1-7), 137-139 (Section 5.1) 

constructing, 164-166 (Exercise 5-3) 
special relativity, 5, 18
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down with, 79 (Exercise 3-6) 
four ideas of, 7 3
and swimming, 78 (Exercise 3-1) 
tests of, 131-134 (Section 4.10), 270-273 (Exer­

cises 8-33 through 8-39)
spectral lines, Doppler broadening of, 264 (Exercise 8-25)
speed, measuring, 40-41 (Section 2.8)
speeding light bulb, 264 (Exercise 8-21)
speeding pipes thought experiment, 66
speeding train thought experiment, 65-66
speed of light, see light speed
speed of walking, maximum, 186 (Exercise 6-6)
speed trap, radar, 166-168 (Exercise 5-5)
speeds, comparing, 20 (Exercise 1-1)
Stanford linear accelerator, 215 (Exercise 7-6) 
starlight

aberration of, 81 (Exercise 3-9) 
deflection of by Sun, 50-51 (Exercise 2-13)

Starship Enterprise, 106-107 
stellar aberration, 81 (Exercise 3-9) 
stellar objects, compact, 288-289 (Box 9-2) 
storm, communicarions, 48 (Exercise 2-11) 
stretch factor, 99, 155-160 (Section 5.8) 

and Lorentz contraction, 157 
as measure of speed, 157

stripped down free-float frame, 121-122 (Section 4.2) 
Sun

conversion of mass to energy in, 242-245 (Sample 
Problem 8-5)

deflection of starlight by, 50-51 (Exercise 2-13) 
Doppler shift at limb of, 264 (Exercise 8-22) 
explosion of, 171
gravitational red shift of light from, 258 (Exercise 8-6) 
helium in, 242-245 (Sample Problem 8-5) 
mass of in units of meters, 258 
tide-driving power of, 32-33 (Box 2-1) 

sunspot, 179-180 (Sample Problem 6-3)
Super (superluminal bomb), 108-109 (Box L-1) 
super cosmic rays, 215-216 (Exercise 7-7) 
superluminal expansion of quasar 3C273?, 90-92 (Exer­

cise 3-16)
supernova, 177, 289 
super-rocket frame, 69, 71, 140-142 
super-speed Super, 112 (Exercise L-1) 
surveying spacetime, 5 -8  (Section 1.2)
Surveyors, Parable of, 1 - 4  (Section 1.1), 16-17 (Box 1-1) 
swimming and relativity, 78 (Exercise 3-1) 
symmetric elastic collision, 240 -  241 (Sample Problem 8-3) 
synchronization of clocks, relative, 130 
synchronizing lattice clocks, 37-38, 45-46 (Exercises 

2-3, 2-4)
system of particles, 221 (Section 8.1), 244-251 (Section 

8-8)
mass of, 214 (Exercise 7-2), 224-228 (Section 

8.3), 247-248

not isolated, 228 
system property, heat as, 224

tangent vector to worldline, 194-195 
tau (Greek T), symbol for proper time, 155 
Taylot

Bradley James, 179 
Katherine Rose, 311 
Joseph H., 291 
Meredith Christine, 171 
Samantha Marie, 23 (Exercise 1-10) 

teraflop, 22 (Exercise 1-8)
test particle, 36 (Section 2.5), 47-48 (Exercise 2-10) 
tests of relativity, 131-134 (Seaion 4.10), 270-273 

(Exercises 8-33 through 8-39)
Thompson, Benjamin (Count Rumford), 223 
thought experiments 

speeding pipes, 66 
speeding train, 65-66 

three-vectors. Euclidean, 192 (Box 7-1) 
threshold energy, 236, 259 (Exercise 8-12), 261 (Exercise 

8-16)
tidal effects of large frame, 3 0 -3 4  (Section 2.3), 2 8 0 -  

281 (Section 9.4)
tide-driving power of Moon and Sun, 32-33 (Box 2-1) 
tides, 32-33 (Box 2-1), 281, 286-287 (Box 9-1) 
tilted meter stick paradox 115-116 (Exercise L-10) 
time

“absolute” (Newton), I6O 
as different from space, 18 
of an event, 38, 137-139 (Section 5.1)
Hubble, 264
and length, 11-13 (Section 1.4) 
and Lorentz transformation, 102 
meter of, 12
proper, 10, 148-152 (Section 5.6), 155, 184 
wrisrwatch 10, 148-152 (Section 5.6) 

time delay in communication, 39-40 
timelike relation between events, 11, 172-177 (Section 

6 . 2)

timelike worldline of a particle, 172 
time stretching

experimental evidence of, 131-134 (Section 4.10), 
272-273 (Exercise 8-39) 

with K+ mesons, 72-73 (Sample Problem 3-2) 
with mu-mesons, 23-24 (Exercise 1-11) 
with pi-plus mesons, 24 (Exercise (1-12) 
and spacetime interval, 21 (Exercise 1-4)
See also Twin Paradox 

time traveler, 127- 128 (Section 4.8) 
touring spacetime without a reference frame, 160-162 

(Section 5.9)
traffic light, physicist and, 263-264 (Exercise 8-20) 
train, mass effeas of in collision, 214 (Exercise 7-3)
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train paradoxes, 62-63, 168 (Exercise 5-7), 187-188 
(Exercise 6-8)

train rhought experiment, 65-66 
transformation

Galilean, 113 (Exercise L-3)
Lorentz, 95-111 (Special Topic) 

transformation of angles, 114-115 (Exercise L-6) 
transformation of velocity direction, 115 (Exercises L-7, 

L-8)
transforming worldlines, 164 (Exercise 5-2) 
transverse dimension, invariance of, 65-67 (Section 3.6) 
travel, inrerstellar, 274 (Exercise 8-41) 
traveler, time, 127-128 (Section 4,8)
Travelers, Parable of the Two, 281-283 (Section 9.5) 
traveling clock, synchronization using, 45-46 (Exercise 

2-4)
Treaty of Shalimar, 108-109 (Box L-1) 
tree analogy to momenergy, 210 
Twin Paradox, 125-126 (Section 4.6) 

atomic clocks (“airliner”) test of, 131 
circling airplane test of, 133 
general relativity needed for?, 132 (Box 4-1) 
one-way, 135 (Exercise 4-2) 
oscillating iron atom test of, 134, 272-273 (Exer­

cise 8-39)
put to rest, 169-170 (Exercise 5-8) 
radioactive particle test of, 133 
using Doppler shift, 264 (Exercise 8-24) 

twins, paradox of identically accelerated, 117-118 (Exer­
cise L-13)

Two Travelers, Parable of, 281-283 (Section 9.5)

unit, same for space and time, 11-13 (Section 1.4)
units, 213 (Table 7-1)
units of energy, 203
units of momenergy, 194
units of momentum, 200
units of spacetime, 11-13 (Section 1.4), 20-21 (Exer­

cises 1-2, 1-3)
unit tangent vector to worldline, 194-195 
unity of spacetime, 15-18 (Section 1.5) 
universe

expanding, 82 (Exercise 3-10), 264 (Exercise 8-23), 
297 (Table 9-2)

models of, 296-297 (Seaion 9.9) 
unreachable region, 182 
uranium bomb, 249 
uranium fission, 237

use and abuse of the concept of mass, 244-251 (Section
8 .8)

Van Dam, Hendrik, 79 (Exercise 3-6) 
vector, defined, 192 (Box 7-1)
velocities, addition of, 82-84 (Exercise 3-11), 103-110 

(Section L.7) 
velocity

measuring, 40-41 (Section 2.8) 
velocity of recession from Doppler shift, 114 (Exercise 

L-5), 264 (Exercise 8-23)
velocity of recession from period of light, 82 (Exercise 3-10) 
velocity direction, transformation of, 115 (Exercises L-7, 

L-8)
Verne, Jules, 25-26 
virtual particles, 56-57 (Box 3-1) 
visual appearance of relativistic objects, 64, 92-93 (Exer­

cise 3-17)
von Jagow, Peter, 44

walking, maximum speed of, 186 (Exercise 6-6) 
war

American Civil, 25 
space, 79-81 (Exercise 3-7) 

waves, gravity, 288-292 (Section 9.7) 
weighing heat, 223
Weights and Measures, General Conference on, 12, 58
Weisskopf, V. W., 296
Weyl, Herman, quote, 189
Wheeler's First Moral Principle, 20
white dwarf star, 258-259 (Exercise 8-7), 288 (Box 9-2)
wind, solar 245
worldline, 143-147 (Section 5.4) 

kinked, 152-155 (Section 5.7) 
timelike, of a particle, 172 
ttansforming, 164 (Exercise 5-2) 
unit tangent vector to, 194-195 
wristwatch (proper) time along, 148-152 (Section

5.6)
wristwatch time, 10-11

along a worldline, 148-152 (Section 5.6)

X-ray, see photon

y-velocity, transformation of, 115 (Exercise L-7) 
year as unit of distance and time, 11-13 (Section 1.4)

zero mass for photon, 230 
zero-total-momentum frame, 246-251 
zoo of particles, backyard, 235 (Box 8-1)
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